首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
BACKGROUND: In this work we describe the synthesis of ethyl esters, commonly known as biodiesel, using refined soybean oil and ethanol in a solvent‐free system catalyzed by lipase from Thermomyces lanuginosus. Central composite design and response surface methodology (RSM) were employed to optimize the biodiesel synthesis parameters, which were: reaction time, temperature, substrate molar ratio, enzyme content, and added water, measured as percentage of yield conversion. RESULTS: The optimal conditions obtained were: temperature, 31.5 °C; reaction time, 7 h; substrate molar ratio, 7.5:1 ethanol:soybean oil; enzyme content, 15% (g enzyme g−1 oil); added water, 4% (g water g−1 oil). The experimental yield conversion obtained under these conditions was 96%, which is very close to the maximum predicted value of 94.4%. The reaction time‐course at the optimal values indicated that 5 h was necessary to obtain high yield conversions. CONCLUSION: A high yield conversion was obtained under the optimized conditions, with relative low enzyme content and short time. Comparison of predicted and experimental values showed good correspondence, implying that the empirical model derived from RSM can be used to adequately describe the relationship between the reaction parameters and the response (yield conversion) in lipase‐catalyzed biodiesel synthesis. Copyright © 2008 Society of Chemical Industry  相似文献   

2.
    
BACKGROUND: Biodiesel is increasingly perceived as an important component of solutions to the important current issues of fossil fuel shortages and environmental pollution. Biocatalysis of soybean oils using soluble lipase offers an alternative approach to lipase‐catalyzed biodiesel production using immobilized enzyme or whole‐cell catalysis. The central composite design (CCD) of response surface methodology (RSM) was used here to evaluate the effects of enzyme concentration, temperature, molar ratio of methanol to oil and stirring rate on the yield of fatty methyl ester. RESULTS: Lipase NS81006 from a genetically modified Aspergillus oryzae was utilized as the catalyst for the transesterification of soybean oil for biodiesel production. The experimental data showed that enzyme concentration, molar ratio of methanol to oil and stirring rate had the most significant impact on the yield of fatty methyl ester; a quadratic polynomial equation was obtained for methyl ester yield by multiple regression analysis. The predicted biodiesel yield was 0.928 (w/w) under the optimal conditions and the subsequent verification experiments with biodiesel yield of 0.936 ± 0.014 (w/w) confirmed the validity of the predicted model. CONCLUSION: RSM and CCD were suitable techniques to optimize the transesterification of soybean oil for biodiesel production by soluble lipase NS81006. The related lipase NS81006 reuse stability, chemical or genetic modification, and transesterification mechanism should be taken into consideration. Copyright © 2007 Society of Chemical Industry  相似文献   

3.
Preparation of biodiesel from waste cooking oil catalyzed by combined lipases in tert‐butanol medium was investigated. Several crucial parameters affecting biodiesel yield were optimized by response surface methodology, such as dosage of combined lipases of Novozym 435 and Lipozyme TLIM, weight ratio of Novozym 435 to Lipozyme TLIM, amount of tert‐butanol, reaction temperature, and molar ratio of oil to methanol. Under the optimized conditions, the highest biodiesel yield was up to 83.5% The proposed model on biodiesel yield had a satisfactory coefficient of R2 (= 94.02%), and was experimentally verified. The combined lipases exhibited high‐operational stability. After 30 cycles (300 h) successively, the activity of combined lipases maintained 85% of its original activity. A reaction kinetic model was proposed to describe the system and deduced to be a pseudo‐first‐order reaction, and the calculated activation energy was 51.71 kJ/mol. © 2009 American Institute of Chemical Engineers AIChE J, 2010  相似文献   

4.
Biodiesel, a non-toxic and biodegradable fuel, has recently become a major source of renewable alternative fuels. Utilization of lipase as a biocatalyst to produce biodiesel has advantages over common alkaline catalysts such as mild reaction conditions, easy product separation, and use of waste cooking oil as raw material. In this study, Pseudomonas cepacia lipase immobilized onto magnetic nanoparticles (MNP) was used for biodiesel production from waste cooking oil. The optimal dosage of lipase-bound MNP was 40% (w/w of oil) and there was little difference between stepwise addition of methanol at 12 h- and 24 h-intervals. Reaction temperature, substrate molar ratio (methanol/oil), and water content (w/w of oil) were optimized using response surface methodology (RSM). The optimal reaction conditions were 44.2 °C, substrate molar ratio of 5.2, and water content of 12.5%. The predicted and experimental molar conversions of fatty acid methyl esters (FAME) were 80% and 79%, respectively.  相似文献   

5.
    
BACKGROUND: The response surface methodology was successfully applied to the optimization of the reaction variables for the kinetic resolution of a precursor of high‐value myo‐inositols, ( ± )‐1,2‐O‐isopropylidene‐3,6‐di‐O‐benzyl‐myo‐inositol (( ± )‐1), by Novozym 435. The resolutions were run separately, with two acylating agents, ethyl acetate and vinyl acetate, in a solvent‐free system. The variables analyzed were reaction temperature, substrate concentration, water concentration and enzyme activity. A statistical model was employed for the evaluation of the influence of the variables on conversion and enantiomeric excess (ee). RESULTS: The optimal conditions for this resolution using vinyl acetate as acylating agent were 45 °C, 5 mg mL?1 of substrate, 71 U of enzyme activity and 0%w/w of water concentration. The high conversion (49.2 %) and ee (>99%) reached in the chemoenzymatic synthesis of acylated product, L‐(?)‐5‐O‐Acetyl‐3,6‐di‐O‐benzyl‐1,2‐O‐isopropylidene‐myo‐inositol, secure the efficient synthesis of the D enantiomorph present in the original racemic mixture (( ± )‐1) as well. CONCLUSIONS: The use of the experimental design strategy was productive, leading to a 14‐fold increase in the productivity of the reaction compared with the non‐optimized conditions. Both derivative L‐(?)‐2 and remaining substrate D‐(+)‐1 were obtained at high ee. © 2012 Society of Chemical Industry  相似文献   

6.
生物柴油是一种可再生的绿色环保型能源.酶法合成生物柴油具有条件温和、醇用量小、甘油易回收等优点.本文综述了固定化脂肪酶、全细胞生物催化剂在生物柴油制备中研究应用的新进展.  相似文献   

7.
常压下采用催化剂一步醇解废旧聚酯(PET)工艺制备聚酯多元醇,并采用物理发泡方式用该聚酯多元醇制备了硬质聚氨酯泡沫塑料,达到废旧PET的循环利用。以催化醇解得到聚酯多元醇的羟值、酸值和黏度为指标,筛选催化剂用量、醇解剂用量和醇解时间为主要因素,通过响应面法优化得到催化醇解废旧PET的最佳工艺条件,即:质量分数0.3%(占PET的质量,下同)的Sb2O3作为解聚的催化剂、质量分数100%的二甘醇为醇解剂,醇解反应时间为2.5 h,通过实验验证表明该条件可靠,实际得到的聚酯多元醇羟值503.9 mgKOH/g,酸值2.4 mgKOH/g,室温黏度1310 mPa·s,以该聚酯多元醇为原料制备硬质聚氨酯泡沫的导热系数为0.02~0.03 W/(m·K),密度为40~50 kg/m3,表明通过该方法实现废旧PET的循环利用是可行的,并提高了其循环利用价值。  相似文献   

8.
    
BACKGROUND: The synthesis of betulinic acid ester using betulinic acid and oleyl alcohol catalyzed by Novozym 435 (immobilized Candida antarctica lipase) was carried out. Response surface methodology (RSM) based on a five‐level, three‐variable, central composite rotatable design (CCRD) was employed to evaluate the interactive effects of various parameters. The parameters were reaction time (8–16 h), temperature (20–60 °C) and enzyme amount (120–160 mg). RESULTS: Simultaneously increasing reaction time, temperature and amount of enzyme increased the yields of betulinic acid ester produced. CONCLUSION: The optimum conditions derived via RSM for the reaction were reaction time of 10.2 h, temperature of 53.1 °C and enzyme amount of 138 mg. The actual experimental yield was 48.5% under optimum conditions, which compared well with the maximum predicted value of 47.6%. Copyright © 2008 Society of Chemical Industry  相似文献   

9.
李琴  张立伟  闫云君 《应用化工》2009,38(11):1549-1552,1560
酶法制备生物柴油工艺引起了越来越多的关注。本文以脂肪酶回收前后脂肪酸甲酯得率之比作为检测指标,采用响应面法对自行制备的固定化洋葱伯克霍尔德菌脂肪酶的回收工艺参数进行了优化,并利用软件SAS 9.0对实验数据进行分析。确定的最佳回收条件:回收溶剂用量20.4 mL,回收温度40.2℃,回收时间20 m in。此条件下,验证试验脂肪酶回收率最大可达98.26%,与回归模型预测最优条件下脂肪酶回收率99.59%非常接近,且使用30次后,其回收效率依然接近100%。R2=96.63%显示该回归模型在分析脂肪酶回收率方面具有极高的准确性和可信度。  相似文献   

10.
新型反应介质中脂肪酶催化多种油脂制备生物柴油   总被引:14,自引:0,他引:14  
用叔丁醇作为反应介质,利用固定化脂肪酶催化油脂原料甲醇醇解反应制备生物柴油,消除了甲醇和甘油对酶的负面影响,酶的使用寿命显著延长. 用菜籽油作原料,叔丁醇和油脂的体积比为1:1,甲醇与油脂的摩尔比为4:1,3%的Lipozyme TLIM和1%的Novozym 435结合使用,35℃下130 r/min反应12 h,生物柴油得率可达95%. 该工艺在200 kg/d的规模下制得的生物柴油产品完全满足美国和德国生物柴油标准,脂肪酶重复使用200批次,酶活性基本没有下降. 且在叔丁醇介质体系中大豆油、桐籽油、棉籽油、乌桕油、泔水油、地沟油和酸化油都能被有效转化成生物柴油且脂肪酶保持很好的稳定性.  相似文献   

11.
生物酶法生产生物柴油具有化学催化法不可比拟的优越性,是工业化生产的发展方向。介绍了固定化脂肪酶在催化油脂酯交换制备生物柴油方面的应用,对影响酯交换反应的脂肪酶源、底物摩尔比率、酰基受体、水含量、反应温度、副产物等因素进行了综述。  相似文献   

12.
Enzymatic methanolysis of refined soybean oil with methanol was investigated using Rhizomucor miehei lipase, Lipozyme RM IM, in n-hexane for reaction times of 30 min. Response surface methodology (RSM) based on three-level, three-factor (variable) face-centered cube design was used for the optimization of methanolysis. The independent variables that affect the methanolysis reaction conducted in n-hexane are temperature (°C), enzyme/oil weight ratio, and oil/methanol molar ratio. A good quadratic model was obtained for the methyl ester production by multiple regression and backward elimination. A linear relationship was observed between the observed and predicted values (R2−0.9635). The effects of temperature and enzyme amount, which affected methyl ester content of the product (response) positively, were significant (P<0.01). The quadratic term of temperature and the interaction term of enzyme amount with temperature affected the response negatively (P<0.01). The interaction term of enzyme amount with substrate mole ratio had a positive effect on the response (P<0.05). Critical conditions for the response at which methyl ester content of the product was 76.9% were determined to be 50°C, 2.37 methanol/oil mole ratio, and 0.09 enzyme/oil weight ratio.  相似文献   

13.
响应面法优化酶催化酯交换反应研究   总被引:7,自引:0,他引:7  
为了利用植物油生产可再生的绿色能源——生物柴油,文章利用Novo435固定化脂肪酶,在无有机溶剂存在下催化菜籽油与甲醇酯交换合成生物柴油。利用响应面实验设计和分析方法对菜籽油的酯交换反应条件进行优化,得到了最佳工艺条件:醇油摩尔比1.5∶1,反应温度52℃,搅拌转速200 r/min,脂肪酶与油脂的质量比为10%,反应时间10 h,在此工艺条件下油脂的酯交换率达到48%(理论为50%)。理论甲醇量分3批加入,反应36 h后菜籽油的总酯交换率达到95%(理论酯交换率为100%)。每批试验后利用有机溶剂对脂肪酶进行清洗,然后继续反应,连续使用10个批次,油脂的酯交换率基本未变。  相似文献   

14.
以麻疯树油、亚麻油、乌柏油为原料油,采用固定化脂肪酶Lipozyme TL IM,在3.0 g油、1 mL正己烷、醇油摩尔比为3.5∶1、固定化酶质量为油质量20%的条件下进行生物柴油的制备,通过脂肪酸甲酯产率和组成分析,以考察生物柴油制备的影响因素,进行反应时间优化.结果表明,酶的催化作用对脂肪酸组分不存在选择性,且...  相似文献   

15.
甘油二酯的酶法合成工艺研究   总被引:1,自引:0,他引:1  
李鹤  刘云  徐莉  李琴  闫云君 《应用化工》2011,40(1):8-12
以固定化脂肪酶为催化剂,研究无溶剂体系下甘油和辛酸直接酯化合成甘油二酯工艺。在选用的3种脂肪酶中,发现Novozym e 435催化效果最好。以Novozym e 435为催化剂,考察了底物摩尔比、温度、反应加酶量以及脱水方式等因素对辛酸转化率和甘油二酯含量的影响,并通过响应面法优化了工艺参数,获得酶法合成甘油二酯的最优工艺条件:酸油比1.99∶1,反应温度51.5℃,加酶量3.05%,反应时间6.29 h。在最优条件下,甘油二酯的含量达到71.9%。  相似文献   

16.
固定化脂肪酶催化制备香叶树籽生物柴油研究   总被引:3,自引:0,他引:3  
研究了Novozym 435和Lipozyme TLIM混合脂肪酶催化香叶树籽油制备生物柴油,2种酶按1:3质量比混合使用时,既可提高反应转化率,又可降低酶的使用成本.应用响应面优化法确定了固定化酶催化香叶树籽生物柴油的最优工艺参数,采用叔丁醇作为反应体系的溶剂,最优反应条件为反应温度38.5℃、甲醇与油摩尔比4:1、叔丁醇与油体积比1:1.5、酶用量为油质量的4%,此时反应转化率达90.09%.分析表明香叶树籽油的甘油三酯主要由短链脂肪酸甘油酯组成,生物柴油中原油的甘油三酯已完全转变成脂肪酸甲酯.  相似文献   

17.
生物酶法转化酵母油脂合成生物柴油   总被引:4,自引:0,他引:4  
以一株高产油脂圆红冬孢酵母菌(Rhodosporidum toruloides Y4#)干菌粉为原料,利用酸热法提取了该酵母油脂,并对所得油脂进行了分析. 进一步利用该酵母油脂为原料分别研究了无溶剂体系中三步甲醇法及在叔丁醇介质体系中脂肪酶催化合成生物柴油,发现脂肪酶可以有效转化该酵母油脂制备生物柴油. 在优化反应条件下,生物柴油得率可达90%左右,略低于相同条件下利用精制大豆油合成生物柴油的得率.  相似文献   

18.
研究了响应面法优化东京野茉莉油制备生物柴油的工艺。通过单因素实验,对影响转化率的四个主要因素:油醇摩尔比、催化剂用量、反应时间、反应温度进行考察,并根据Box-Behnken中心组合进行4因素3水平的实验设计,以东京野茉莉生物柴油转化率为响应值,进行响应面分析(RSA)。结果表明,东京野茉莉生物柴油的最佳工艺条件为:油醇摩尔比1∶8、催化剂用量为油质量的0.78%、反应时间2.2 h、反应温度60℃,理论转化率为95.81%。实际验证值为95.32%,理论值与实际值相对误差为0.49%,说明通过响应面法能得到一个预测试验结果的模型方程。以东京野茉莉油为原料通过酯化反应制取的生物柴油与0#柴油及国标GB/T 20828-2007主要性能相似,通过与石油柴油调和或添加降凝剂等方法,可改善低温流动性。  相似文献   

19.
以月桂酸三甘油酯和甘油为原料,脂肪酶催化甘油解反应合成月桂酸单甘油酯。在单因素试验的基础上,采用响应面分析法进行合成工艺优化。结果表明,含水量(相对于甘油的质量)对月桂酸单甘油酯产率的影响最为显著,且较优合成条件为:恒温振荡器转速100 r/min,酶添加质量分数(相对于底物)5%,n(甘油)∶n(月桂酸三甘油酯)=6∶1,底物质量分数(相对于整个反应体系)51.9%,温度65℃,含水量4.23%,反应时间5 h。在此条件下,月桂酸单甘油酯产率的预测值和实验值分别为81.68%和81.32%,说明二次多项回归模型具有良好的预测性。  相似文献   

20.
复合固定化脂肪酶催化麻疯树油生产生物柴油   总被引:2,自引:0,他引:2  
对固定化复合脂肪酶催化麻疯树油合成生物柴油进行了研究,利用3因素5水平中心旋转设计的响应曲面法对反应条件进行了优化,研究了复合酶用量、复合酶配比及底物配比对反应的影响。优化结果为复合酶用量为0.27 g,N435占总酶质量的比例为0.15,乙酸甲酯与麻疯树油的摩尔比为10.10,预测生物柴油得率为72.55 %,与实际产率74.34 %吻合较好。并建立了复合酶催化合成生物柴油反应的动力学方程,反应为双底物抑制,符合乒乓机制。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号