首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Supersaturated process waters high in silicates frequently result in deposition of colloidal silica or metal silicate salts. Silica cannot be inhibited by conventional phosphonate mineral scale inhibitors. Chemical cleaning poses hazards and requires operational shut-downs. This paper is focused on a dual approach for silica scale control, inhibition of colloidal silica formation and colloidal silica dissolution in water technology applications by use of designed chemical approaches. The additives used for silica inhibition were polyaminoamide dendrimers (PAMAM) and polyethyleneimine (PEI), in combination with carboxymethyl inulin (CMI) and polyacrylate (PAA) polymers. In principle, silica inhibition is a function of time and inhibitor dosage. Amine-terminated PAMAM-1 and 2 dendrimers as well as PEI combined with anionic polymers, such as CMI and PAA, seem to have a significant inhibitory effect on silica formation, most likely at its earlier stages where the reaction products are oligomeric silicates. CMI and PAA assist the inhibitory action of PAMAM-1 and 2 and PEI by alleviating formation of insoluble SiO2-PAMAM precipitates. This most likely occurs by partial neutralization of the positive charge that exists in –NH+3 surface groups. Increase of anionic polymer dosage above a certain threshold has a detrimental effect on the activity of the cationic inhibitors. In that case the polymer’s negative charge “overwhelms” the cationic charge of the inhibitor and poisons its inhibition ability. For silica dissolution, acetic, oxalic, citric acids, histidine and phenylalanine were used as potential replacements of ammonium bifluoride (NH4F·HF). Silica dissolution is dependent in a rather unpredictable fashion on the structure of the dissolver, time and dosage. This paper continues our research efforts in the discovery, design and application of antiscalant additives that have mild environmental impact. These chemicals are also known as “green additives”.  相似文献   

2.
Poly(amidoamine) (PAMAM) dendrimers have attracted attention because of their well‐defined molecule structures and chemical versatility, which also complicate the mechanism of interactions between metal ions and PAMAM dendrimers. To further understand the complexation of dendrimers with metal ions, the interactions between Pd2+ ions and G4.5‐COOCH3 PAMAM dendrimers were investigated by UV‐vis and FTIR spectrophotometric method. The results show that the addition of K2PdCl4 results in covalent attachment of the PdCl alcoholysis product of this complex to tertiary amines within the dendrimers under the appropriate conditions. This process was also supported by X‐ray photoelectron spectroscopy data of the new complex which indicated a 1 : 3 Pd/Cl ratio. The maximum loading of 80 Pd2+ ions within the G4.5‐COOCH3 dendrimers and the best pH value of 8.3 for complexation system are also obtained. Details regarding the Pd species present in solution of different chemical environments are reported. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

3.
We report here a general approach to using poly(amidoamine) (PAMAM) dendrimers modified with polyethylene glycol (PEG) as a platform to encapsulate an anticancer drug doxorubicin (DOX) for in vitro cancer therapy applications. In this approach, PEGylated PAMAM dendrimers were synthesized by conjugating monomethoxypolyethylene glycol with carboxylic acid end group (mPEG‐COOH) onto the surface of generation 5 amine‐terminated PAMAM dendrimer (G5.NH2), followed by acetylation of the remaining dendrimer terminal amines. By varying the molar ratios of mPEG‐COOH/G5.NH2, G5.NHAc‐mPEGn (n = 5, 10, 20, and 40, respectively) with different PEGylation degrees were obtained. We show that the PEGylated dendrimers are able to encapsulate DOX with approximately similar loading capacity regardless of the PEGylation degree. The formed dendrimer/DOX complexes are water soluble and stable. In vitro release studies show that DOX complexed with the PEGylated dendrimers can be released in a sustained manner. Further cell viability assay in conjunction with cell morphology observation demonstrates that the G5.NHAc‐mPEGn/DOX complexes display effective antitumor activity, and the DOX molecules encapsulated within complexes can be internalized into the cell nucleus, similar to the free DOX drug. Findings from this study suggest that PEGylated dendrimers may be used as a general drug carrier to encapsulate various hydrophobic drugs for different therapeutic applications. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40358.  相似文献   

4.
Dendrimers have been used as a vehicle to develop the antimicrobial properties of textile fabrics. We have taken advantage of the large number of functional groups present in the regular and highly branched three‐dimensional architecture of dendrimers. In this study, the poly(amidoamine) (PAMAM) G‐3 dendrimer was modified to provide antimicrobial properties. Following a procedure similar to what is suggested in the literature, PAMAM (G3) with primary amine end groups was converted into ammonium functionalities. The modification was then confirmed by FTIR and 13C‐NMR analysis. Dendrimers have unique properties owing to their globular shape and tunable cavities, this allows them to form complexes with a variety of ions and compounds; and also act as a template to fabricate metal nanoparticles. AgNO3–PAMAM (G3) complex as well as a MesoSilver–PAMAM (G3) complex were formed and these modified dendrimers were characterized by a UV–Visible spectrophotometer to study the complex formation. Modified dendrimers were applied to the Cotton/Nylon blend fabric. SEM and EDX analysis were performed to study the dispersion of silver nanoparticles onto the fabric. An antimicrobial test of the treated‐fabric against Staphylococcus aureus exhibited significant biocidal activities for each type of modified‐dendrimer. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

5.
A series of poly(butyl methacrylate)s (PBMAs) with various molar masses (33 000–270 000 g mol?1), which were densely grafted on fumed silica nanoparticles (PBMA–SiO2), were synthesized by surface‐initiated atom transfer radical polymerization. The dynamic viscoelastic behavior of PBMA–SiO2 was systematically investigated in the solid and molten states with oscillatory strains, and compared to that of a conventional nanocomposite (PBMA/SiO2). The storage moduli of PBMA–SiO2 and PBMA/SiO2 are equivalent in the solid state, whereas the storage modulus of PBMA–SiO2 is lower than that of PBMA/SiO2 in the molten state, especially at high silica loading. This is because the formation of a network structure composed of the silica nanoparticles in PBMA–SiO2 is strongly suppressed by the polymer brushes on the particles. In contrast, even at low silica loading, the PBMA–SiO2 system exhibits a gel‐like behavior resulting from a steric repulsion between the composite particles, because all of the tethered polymers behave as bound polymers. Copyright © 2011 Society of Chemical Industry  相似文献   

6.
Poly(methy methacrylate) (PMMA)‐SiO2 nanoparticles were prepared via differential microemulsion polymerization. The effects of silica loading, surfactant concentration, and initiator concentration on monomer conversion, particle size, particle size distribution, grafting efficiency, and silica encapsulation efficiency were investigated. A high monomer conversion of 99.9% and PMMA‐SiO2 nanoparticles with a size range of 30 to 50 nm were obtained at a low surfactant concentration of 5.34 wt% based on monomer. PMMA‐SiO2 nanoparticles showed spherical particles with a core‐shell morphology by TEM micrographs. A nanocomposite membrane from natural rubber (NR) and PMMA‐SiO2 emulsion was studied for mechanical and thermal properties and pervaporation of water‐ethanol mixtures. PMMA‐SiO2 nanoparticles which were uniformly dispersed in NR matrix, significantly enhanced mechanical properties and showed high water selectivity in permeate flux. Thus, the NR/PMMA‐SiO2 hybrid membranes have great potential for pervaporation process in membrane applications. POLYM. ENG. SCI., 2017. © 2017 Society of Plastics Engineers  相似文献   

7.
In this study, a commercially available nano‐sized silica (SiO2) was surface‐modified via esterification with oleic acid (OA), a relatively inexpensive and hydrophobic modifier. The surface‐modified silica (SiO2‐OA) nanoparticles were used to disperse in the poly(amic acid) solutions of a commercial polyimide (PI), used for two‐layer film, and thermally imidized to form a series of PI/silica nanocomposites. The effects of the addition of SiO2‐OA nanoparticles on the properties of the as‐prepared PI/silica nanocomposites were studied. The results indicated that the as‐prepared PI/silica nanocomposites exhibited improvements in the dynamic mechanical property, thermal stability, water resistance, and thermal expansion. POLYM. COMPOS. 28:575–581, 2007. © 2007 Society of Plastics Engineers  相似文献   

8.
Stearyl‐group‐terminated poly(ester amide) dendrimers [PEAD (R)3 and PEAD (R)8] and a poly(amino amide) dendrimer [PAMAM (R)4] were synthesized by the amidation of three, eight, and four terminated primary amino groups in poly(ester amine) dendrimers and a poly(amino amide) dendrimer with stearyl chloride. The dendrimer structures were characterized with IR and elemental analysis. The toluene solutions of the stearyl‐group‐terminated dendrimers were thermosensitive. Not only did gels form in PEAD (R)3–, PEAD (R)8–, and PAMAM (R)4–toluene solutions below 57.5, 60, and 49°C, respectively, but the content of toluene in the gels depended on the temperature, and a break existed at about 30°C. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 341–346, 2005  相似文献   

9.
Deposition of amorphous silica (SiO2) and calcium oxalate monohydrate (COM) on the calandria tubes of evaporators cause serious processing problems in many cane sugar mills. Previous studies on scale formation have concentrated on fouling of individual compounds and the development of inhibiting methods for each component. Since SiO2 and COM co-exist in sugar mill evaporators, this paper investigates the mechanisms and behavior of composite fouling of COM and SiO2 in binary systems. Batch tests conducted at different pH (6-8) and temperatures (60-80°C) show that the presence of SiO2 in the supersaturated solutions of COM decreased the precipitation rate of COM and as such increased COM solubility. However, the presence of COM in the supersaturated solutions of SiO2 accelerated SiO2 polymerization and lowered the level of initial silica supersaturation required for polymerization. The formation of COM-SiO2 complexes is used to propose the mechanism for the co-precipitation of SiO2 and COM.  相似文献   

10.
Dendrimers are globular, hyperbranched polymers possessing a high concentration of surface functional groups and internal cavities. These unique features make them good host molecules for small ligands. To reveal relationships between dendrimer size and its encapsulating properties, the interactions of the fourth and the sixth generations of polyamidoamine dendrimers (PAMAM G4 and PAMAM G6) with a fluorescent dye 1‐anilinonaphthalene‐8‐sulfonate (ANS) were studied. Because ANS is a fluorescent molecule and its fluorescence is very sensitive to changes in its microenvironment, it was possible to use spectrofluorometric methods to evaluate the interactions with dendrimers. A double fluorometric titration method was used to estimate a binding constant and the number of binding centers. There were two types of dendrimer binding centers characterized by different affinity towards ANS. For PAMAM G4, the values of Kb and n for low‐affinity and high‐affinity sites equaled to 2.6 × 105, 0.60 and 3.70 × 106, 0.34, respectively, whereas in the case of PAMAM G6, these values equaled to 1.2 × 105, 76.34 and 1.38 × 106, 22.73. It was observed that the size of the dendrimer had a strong impact on the number of ANS molecules that interacted with dendrimers and their location within the macromolecule. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 2036–2040, 2007  相似文献   

11.
In this study, a commercially available nano‐sized silica (SiO2) was surface‐modified via esterification with oleic acid (OA), a relatively inexpensive and hydrophobic modifier, and characterized by FTIR, NMR, SEM, EDS, and TGA measurements. Various amounts of the surface‐modified silica nanoparticles (SiO2‐OA) were dispersed in a poly(amic acid), which were then cyclized at high temperatures to form a series of PI/SiO2‐OA nanocomposite films (PISA). The effect of the addition of the SiO2‐OA nanoparticles on the properties of the as‐prepared polyimide nanocomposite was studied. The results indicated that, comparing with pure PI and PI/pristine‐SiO2 composite film (PISI), the as‐prepared PISA films had enhanced dynamic mechanical properties and thermal stability, as well as reduced water absorption and thermal expansion. The as‐prepared PI/SiO2‐OA nanocomposites have potential for applications in high performance microelectronic devices. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104, 4096–4105, 2007  相似文献   

12.
BACKGROUND: A new processing method for polypropylene–untreated precipitated silica (PP/SiO2) composites based on the incorporation of a second polymer phase of polyamide 6 (PA6) is presented and compared with a more classic one making use of compatibilizers: glycerol monostearate (GMS), ethylene acrylic acid ionomer (IAAZE) and maleic anhydride grafted polypropylene (MA‐graft‐PP). The effects of processing methods and conditions on the microstructure and properties of PP/SiO2 composites prepared by melt compounding are investigated with a view to reduce the size of aggregates of silica from the micrometre to the nanometre scale and to improve the link between filler and matrix. RESULTS: On the one hand, the presence of GMS and IAAZE compatibilizers significantly improves the dispersion of the silica particles. On the other hand, when using a PA6 second phase, the SiO2 particles are dispersed in PA6 nodules. Within these nodules, SiO2 appears dispersed at the nanoscale but with larger particles (‘aggregates’) of about 200 nm. Significant improvements in tensile strength and modulus are obtained using MA‐graft‐PP compatibilizer. An increase in impact strength is observed in the case of GMS compatibilizer. Thermal parameters indicate also that silica plays the role of nucleation agent for PP matrix. All improvements (tensile strength, modulus and impact strength) increase with the addition of compatibilized PA6 second phase. CONCLUSION: By the incorporation of masterbatch of silica in PA6 as a second polymer polar phase, a successful new production method for PP/SiO2 nanocomposites has been developed. Interestingly, this method does not require any (expensive) pre‐treatment of the silica. Copyright © 2007 Society of Chemical Industry  相似文献   

13.
A facile and novel strategy was reported on the fabrication of raspberry‐like SiO2/polystyrene (SiO2/PS) composite particles by emulsion polymerization in the presence of vinyl‐functionalized silica (vinyl‐SiO2) particles, which were prepared via a one‐step sol–gel process using vinyltriethoxysilane as the precursor. The submicron vinyl‐SiO2 particles were used as the core, and nanosized PS particles were then adsorbed onto the vinyl‐SiO2 particles to form raspberry‐like composite particles during the polymerization process. The composition, morphology, and structure of the vinyl‐SiO2 particles and the SiO2/PS hybrid particles were characterized by thermogravimetric analysis, nuclear magnetic resonance, Fourier transform infrared spectroscopy, transmission electron microscopy, and scanning electron microscopy. Superhydrophobic surface can be constructed by directly depositing the raspberry‐like SiO2/PS composite particles on glass substrate, and the water contact angle can be adjusted by the styrene/SiO2 weight ratio. In addition, the superhydrophobic film possessed a strong adhesive force to pin water droplet on the surface even when the film was turned upside down. POLYM. COMPOS., 2013. © 2012 Society of Plastics Engineers  相似文献   

14.
In this article, a new type of soluble polyester/silica (PE/SiO2) hybrid was prepared by the ultrasonic irradiation process. Surface modification of SiO2 was conducted using coupling agent γ‐glycidyloxypropyltrimethoxysilane (GOTMS) under ultrasonic irradiation. The structures of the modified hybrid nanocomposites were identified with a Fourier‐transform infrared spectroscopy (FT‐IR), whereas the size of the SiO2 in PE was characterized with a scanning electron microscope (SEM). SEM results indicated the formation and dispersion of nanometer scale size of inorganic domains inside the PE matrix due to the introduction of modified SiO2 and the interactions between organic and inorganic phases. The size of SiO2 particles in the modified system was about 25 nm. The transmission electron microscope (TEM) analysis showing the well‐dispersed nanosized titania nanoparticles (NPs). The densities and solubilities of the PE/SiO2 hybrids were also measured. Furthermore, thermal stability, residual solvent in the membrane film, and structural ruination of membranes were analyzed by thermal gravimetric analysis (TGA). Moreover, their mechanical properties were also characterized. It can be observed that the Young's moduli (E) of the hybrid films increase linearly with the silica content. The results obtained from gas permeation experiments showed that adding SiO2 to the PE membrane structure increased the permeability of the membranes. POLYM. ENG. SCI., 59:E237–E247, 2019. © 2018 Society of Plastics Engineers  相似文献   

15.
p-Aminophenol was synthesized by catalytic hydrogenation of p-nitrophenol on Ni nanoparticles prepared by a chemical reduction method using polyamidoamine (PAMAM) dendrimers as templates. The as-prepared Ni nanoparticles were characterized by XRD, LRS, EDS, FTIR, FESEM, HRTEM and N2 sorption analysis. Smaller-sized, better-dispersed and more active Ni nanoparticles can be successfully achieved using PAMAM dendrimers as templates. Analysis results show the as-prepared Ni nanoparticles are pure f.c.c. nickel. In hydrogenation reactions of p-nitrophenol, Ni nanoparticles show higher catalytic activity than that of Ni nanoparticles prepared in the absence of PAMAM dendrimers. The weight ratio of PAMAM/Ni2+ is proved to be an important parameter on the catalytic activity of Ni nanoparticles and the optimal ratio is 15%. The reason proposed for higher catalytic activity of Ni nanoparticles is a combination effect of smaller particle size, better dispersion and more active Ni nanoparticles.  相似文献   

16.
Polyamidoamine (PAMAM) dendrimers up to the third generation were grown for the first time on the surface of a large‐pore (18 nm) Davisil silica support. The supported dendrimers of generations 0, 1, 2 and 3 were phosphinomethylated and complexed with rhodium. All the generations were found to be very active for the hydroformylation of olefins. The hydroformylation of 1‐octene was accomplished with a turnover frequency of 1700 h−1 at 70 °C. The G(1) material was found to be the most active when the different generations were compared at 50% conversion at 70 °C  相似文献   

17.
We prepared an azo dye rotaxane and its polymeric metal complex and successfully demonstrated their useful application for dyeing silica fiber, which exhibited high‐color strength and fairly good color fastness. These benefits were made possible by the hydrogen bonding between SiO2 and hydroxyl groups (? OHs) on α‐cyclodextrin (α‐CD). Spectroscopic evidence supports the formation of polymeric metal‐complexed rotaxanes within the silica fiber. The current results are meaningful because they indicate that the proper adjustment of the interaction between CD and SiO2 can produce CD‐encapsulated dyes that provide an effective platform for depositing various metal ions on silica surfaces, which will be useful in numerous promising applications. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

18.
Generation 4 hydroxyl terminated polyamidoamine (PAMAM) dendrimer encapsulated nanoparticles (DENs) were examined as precursors for Pt/TiO2 catalysts. In this preparation method, the dendrimers were initially used to template and stabilize Pt nanoparticles in solution. DENs were then deposited onto titania, and activation conditions for dendrimer thermolysis were examined. The interactions between PAMAM dendrimers and the titania were found to differ from previous reports of dendrimer-support interactions with silica, alumina, and zirconia. In the case of titania, the amide bonds were found to shift 100 cm?1, indicating adsorption occurs primarily through amide–titania interactions. Infrared spectroscopy, CO oxidation catalysis, and toluene hydrogenation catalysis were used to evaluate protocols for removing the dendrimer. Thermal decomposition of the DENs in O2 or CO/O2 atmospheres led to the formation of surface isocyanates that were preferentially bound to the metal nanoparticles. CO oxidation catalysis was insensitive to the activation protocol used, and infrared spectroscopy of adsorbed CO showed only small differences in the basic surface properties of the resulting Pt catalysts. Toluene hydrogenation catalysis was more sensitive to different activation pretreatments. The most active hydrogenation catalysts resulted from short, low temperature (150 °C) hydrogen treatments while longer treatments at higher temperature (300 °C) resulted in slightly less active catalysts.  相似文献   

19.
Polyimide–silica (PI–SiO2) hybrids with a nanostructure was obtained using the nonaqueous sol–gel process by polycondensation of phenyltriethoxysilane in a polyamic acid solution. Self‐catalyzed hydrolysis of phenyl‐substituted akoxysilane and modification on the polyimide structure are applied and result in highly compatible PI–SiO2 hybrids. Transparent PI–SiO2 with a high silica content of about 45% was thus obtained. The prepared PI–SiO2 films were characterized by infrared spectrometry, 29Si‐NMR, thermogravimetric analysis, differential scanning calorimetry, and scanning electron microscopy. These characterizations showed the silica influence on the properties of the hybrid. The thermal expansion coefficient of the PI–SiO2 and the temperature correlation were also established for probing the potential for application. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 76: 1609–1618, 2000  相似文献   

20.
Baohua Huang 《Polymer》2011,52(26):5975-5984
Polyamidoamine (PAMAM) dendrimers have unique attributes that have led to their use in a wide variety of biomedical applications. However, the complex synthesis of this polymer leads to variations in the structure and consistency of the final product, and makes scale-up of manufacturing difficult. This has limited the clinical translation of PAMAM-based materials. Here we describe a rapid and highly efficient two-step method for the synthesis of novel Poly(EThyleneAmidoAmine) (PETAA) dendrimers that have many of the favorable characteristics of PAMAM dendrimers. Generation 0 (G0) to 5 (G5) PETAA dendrimers were synthesized using a 3-(bis(2-(2,2,2,-trifluoroacetamido)ethyl)amino)propanoic acid AB2 (compound 1) building block via a divergent approach. An ethylenediamine core was coupled with the AB2 building block via O-(7-Azabenzotriazol-1-yl)N,N,N’,N’-tetramethyluronium hexafluorophosphate (HATU) in the presence of diisopropylethyl amine to give a G0 trifluoroacetamide surface dendrimer. The G0 amine surface dendrimer was then obtained by treating the G0 trifluoroacetamide surface dendrimer with potassium carbonate. Repetitions of these two coupling/deprotection reactions were then used to build the dendrimer by coupling the surface amino groups to the carboxyl moiety of the AB2 building block, followed by the deprotection step with potassium carbonate. The resulting PETAA dendrimers have the same number of surface primary amino groups, the same number of chemical bonds between the dendrimer core and the surface, and the same number of tertiary amino groups throughout the structures as similar generations of PAMAM dendrimers. In contrast, the structure of the PETAA dendrimers is more complete and more uniform than PAMAM dendrimers, especially at higher generations. This unique synthetic process for PETAA dendrimers also offers the potential for large-scale production, therefore providing inherently more uniform and complete structures for exacting biomedical applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号