共查询到20条相似文献,搜索用时 15 毫秒
1.
In an extensive study the role of the alloying elements in commercial alloys for corrosion resistance was studied in air without and with 0.1 and 2 vol.% Cl2, respectively. In the first part of this paper [1] the thermodynamic fundamentals were discussed on the basis of the new concept of the quasi‐stability diagrams. The second part which is presented here reports the results from investigations at 650, 800 and 1000°C and testing times up to 1000 hrs where 14 commercial alloys were tested with regard to their corrosion behavior. The materials were selected so that the role of the alloying elements Mo, C, Si, Al, N, Fe, Ni and Cr would be evident from the results. The exposure tests were followed by extensive microstructural analyses of the corrosion scales and the metal subsurface zones so that type, mechanism and extent of corrosion could be characterized in great detail. At the end a ranking was possible of the different materials and with regard to the detrimental or beneficial role of the different alloying elements. The present results thus provide a much deeper insight into materials resistance in oxidizing‐chloridizing environments at high temperatures. 相似文献
2.
The aim of this study was to assess the long‐term impact that the addition of biomass provokes on superheater materials exposed to fireside corrosion environments. Alloys covering a broad range of commercially available materials were investigated. Their corrosion kinetics under different corrosive deposits and atmospheres was evaluated, and their corrosion products analyzed to deepen understanding of the underlying corrosion mechanisms. Therefore, three nickel‐based alloys and three austenitic steels containing 20–24 wt.% Cr were tested at 650°C for 7,000 hr. The long‐term exposure shows new mechanistic aspects of Type II hot corrosion that were revealed by accelerated material depletion. The formation of Ni–NiS eutectic and the formation of a Cr depleted zone close to the substrate corrosion product interface are indicative of the breakaway occurrence. Differences in the corrosion behavior are related to the balance of Ni, Mo, Co, and Cr and can serve as the material selection argument. The evaluation concluded with the finding that alloys presenting Mo and Ni might be preferentially used in fireside corrosion in the presence of biomass, whereas the use of austenitic steels suffer less corrosion if no biomass is present in the corrosive atmosphere. 相似文献
3.
《腐蚀工程科学与技术》2013,48(5):355-363
AbstractCorrosion tests were performed with four different materials exposed at the furnace wall in a power boiler burning recycled wood, with the aim of evaluating coatings to reduce the corrosion. The nickel base Alloy 625 and the iron–chromium–aluminium alloy Kanthal APMT had the lowest corrosion rates followed by the stainless steel 310S. The low alloy steel 16Mo3, from which the walls are constructed, had the highest rate. Different corrosion mechanisms were found to occur according to the alloy type. Thermodynamic modelling showed that chlorine gas exists at extremely low levels under the prevailing conditions and the hydrated form is thermodynamically favoured. 相似文献
4.
Xiaodong Tian 《Surface & coatings technology》2009,203(9):1161-1166
In order to prepare Al-modified silicide coatings on an Nb-based ultrahigh temperature alloy, both a two-stage pack cementation technique and a co-deposition pack cementation technique were employed. The two-stage process included siliconizing a specimen at 1150 °C for 4 h followed by aluminizing it at 800-1000 °C for 4 h. The coating prepared by pack siliconization was composed of a thick (Nb,X)Si2 (X represents Ti, Cr and Hf elements) outer layer and a thin (Nb,X)5Si3 transitional layer; after the siliconized specimens were aluminized at or above 860 °C, a (Nb,Ti)3Si5Al2 phase developed at the surface of the coating, and furthermore, when aluminizing was carried out at 860 °C, a new (Nb,Ti)2Al layer formed in the coating between the (Nb,X)5Si3 layer and the substrate, but when aluminizing was performed at 900-1000 °C, the new layer formed was (Nb,Ti)Al3. The co-deposition process was carried out by co-depositing Si and Al on specimens at 1000-1150 °C for 8 h under different pack compositions, and it was found that the structure of co-deposition coatings was more evidently affected by co-deposition temperature than pack composition. An Al-modified silicide coating with an outer layer composed of (Nb,Ti)3Si5Al2, (Nb,X)Si2 and (Nb,Ti)Al3 was obtained by co-depositing Si and Al at 1050 °C. 相似文献
5.
为了提高铌合金的高温抗氧化性,采用化学镀结合包埋渗技术在铌合金表面制备了含有CeO_2颗粒的复合涂层,研究了复合涂层的微观结构和高温抗氧化性能。结果表明,不含CeO_2的Al/Ni涂层以NiAl相为主,Al/Ni-CeO_2涂层则含NiAl、NiAl_3、Al3Nb和CeO_2等相。经1000℃氧化测试,Al/Ni复合涂层氧化50 h后增重为8.0 mg/cm~2,表面主要生成Al_2O_3、AlNbO_4相;Al/Ni-CeO_2复合涂层50 h后氧化增重为4.0 mg/cm~2,表面以Al_2O_3、CeO_2、NiAl、NiAl_3、Al3Nb、AlNbO_4相为主。高温氧化后,2种涂层样品表面均生成连续致密的Al_2O_3膜,涂层与基体结合良好;含CeO_2的涂层,其稀土氧化物主要在Ni膜拖拽力作用下富集于涂层互扩散区。稀土氧化物颗粒的添加细化涂层组织,降低涂层中Al元素的消耗,填补涂层中的孔洞,增强了氧化膜与涂层的粘附力,有效提高了涂层的抗氧化性。 相似文献
6.
In this study, aluminized Alloy 617 was prepared by Al-pack cementation of high temperature high Al activity process. The microstructure evolution and microstructural changes of aluminide coating were investigated after Al-pack cementation and high-temperature aging. The aluminide coating was composed of Ni-aluminide layers, such as δ-Ni2Al3, β-NiAl, Cr2Al, Al3 + xMo1 − x, and inter-diffusion zone by pack cementation. After high-temperature aging, the aluminide coating was transformed from the δ-Ni2Al3 to the β-NiAl because of outward Ni diffusion from substrate. The Cr2Al and the Al3 + xMo1 − x were dissolved during aging. On the other hand, the α-(Cr, Mo) particles were precipitated during aging due to the low solubility of alloying elements in the β-NiAl. The β-NiAl newly formed by the outward Ni diffusion during aging and resulted in the formation of the inter-diffusion zone. The inter-diffusion zone consisted of β-NiAl, Ni3(Al, Ti), Cr-rich M23C6 carbide, and sigma phases. 相似文献
7.
The majority of waste in Denmark is disposed via waste to energy (WTE) incineration plants which are fabricated from carbon steel. However, due to the increasing corrosiveness of waste over the years, more corrosion resistant alloys are required. In Denmark, Inconel 625 (UNSN06625) is the weld overlay material currently being used to give improved corrosion resistance. In order to assess the use of alternative nickel alloys, test panels have been manufactured and inserted into Måbjerg waste incineration plant. Inconel 625 as a 50% weld overlay, two layered weld overlay and as a spiral weld overlay was exposed. Other nickel materials exposed were weld overlay Alloy 686, Alloy 50 and Sumitomo Super 625 coextruded tube. Exposure has been undertaken from 2003 to 2009 in the first pass and 2005–2009 in the second pass, and sections have been removed and investigated during this period. The composition of the deposits from the exposed waterwall panels was also analysed each time sections were removed. This paper will compare the various nickel alloys in the two areas and assess the results of the long‐term testing project. 相似文献
8.
L. Heikinheimo D. Baxter K. Hack M. Spiegel M. Hmlinen U. Krupp K. Penttil M. Arponen 《工业材料与腐蚀》2006,57(3):230-236
The main objective of the EU OPTICORR project is the optimisation of in‐service performance of boiler steels by modelling high‐temperature corrosion, the development of a life‐cycle approach (LCA) for the materials in energy production, particularly for the steels used in waste incinerators and co‐fired boiler plants. The expected benefits of this approach for safe and cost effective energy production are: ‐ control and optimisation of in‐service performance of boiler materials, ‐ understanding of high‐temperature corrosion and oxidation mechanisms under service conditions, ‐ improvement of reliability to prevent the failure of components and plant accidents and ‐ expanding the limits of boiler plant materials by corrosion simulations for flexible plant operation conditions (steel, fuel, temperature etc.). The technical aim of the EU OPTICORR project is the development of modelling tools for high‐temperature oxidation and corrosion specifically in boiler conditions with HCl‐ and SO2‐containing combustion gases and Cl‐containing salts. The work necessitates thermodynamic data collection and processing. For development and modelling, knowledge about the corrosion mechanisms and exact data are needed. The kinetics of high‐temperature oxidation and corrosion are determined from laboratory thermo‐gravimetric tests (TG) and multi‐sample exposure tests. The materials studied are typical boiler tubes and fin‐steels: ferritic alloys, the austenitic steel T347 and the Ni‐based alloy Inconel 625. The exposure gases are dry air, air with 15 vol‐% H2O, and with 2000 ppm HCl and 200 ppm SO2. The salt deposits used are based on KCl‐ZnCl2 and Ca, Na, K, Pb, Zn‐sulfates. The test temperatures for exposures with deposits are 320 and 420°C and, for gas exposures, 500 to 600°C. At present the tools being developed are ChemSheet based programmes with a kinetic module and easy‐to‐use interface and a more sophisticated numerical finite‐difference‐based diffusion calculation programme, InCorr, developed for prediction of inward corrosion and internal corrosion. The development of modelling tools for oxidation and high‐temperature corrosion was started with thermodynamic data collection for relevant systems and thermodynamic mappings. Further, there are needs to develop the simulation model and tool for salt‐induced hot corrosion based on the ChemSheet approach. Also, the work on modelling and simulating with the InCorr kinetic modelling tool will be continued to demonstrate the use of the tool for various steels and alloys in defined combustion environments. 相似文献
9.
Mechanism of Degradation of Titanium Alloy IMI 834 and Its Protection Under Hot Corrosion Conditions
The excellent combination of high-temperature strength and lightweight properties makes titanium-base alloys attractive for high-temperature applications in aircraft engines. However, more hot corrosion of titanium alloys is a life-limiting factor, particularly when aircraft fly at low altitudes across the sea. In the present paper, an attempt has been made to understand the degradation mechanism of titanium alloy, IMI 834 under hot corrosion conditions at elevated temperatures. The hot corrosion studies were carried out by determining weight loss at different temperatures and in salts of pure Na2SO4, 90% Na2SO4+10% NaCl and 90% Na2SO4+5% NaCl+5% V2O5. Subsequently, the rate constants were evaluated. The depth of attack due to hot corrosion was compared with oxidation data. Finally, the degradation mechanism of the titanium alloy that leads to degradation of mechanical properties in aggressive environments has been discussed and suitable coatings suggested to enhance the operational life of engines by effectively preventing both oxidation and hot corrosion. 相似文献
10.
Monitoring of oxidation in gas environments typical of energy production is essential for determination of lifetime and condition of various components operating at high temperatures. One of the most important phenomena to be monitored is the oxide growth kinetics and its changes during the exposure. Three different monitoring methods have been presented in this paper. First, a conventional method called thermogravimetry based on the weight change measurement during oxidation is reviewed. Second, a novel monitoring technique, HT-CER technique, where contact electric resistance is measured as a function of time and distance of the measuring tip is presented. The third approach described involves a method under development, based on the change of capacitance over two growing oxide surfaces. Simple oxidation in air at a typical temperature for superheater tubes in boilers, 600 °C, has been selected as the reference condition for all of the monitoring methods. 相似文献
11.
12.
The development and qualification of coatings for materials used in modern steam power plants stems from the increased demand for higher efficiency, and hence higher operating temperatures. Within the EU funded project ‘SUPERCOAT’, several coatings, both overlay and diffusion type, were investigated. Seven different coatings are presented in this work. They included two commercially available HVOF coatings (Ni–20Cr and Ni–50Cr), an aluminium‐based slurry coating (IPCOTE), together with two further variations of this slurry coating containing sputter‐coated inter‐layers. An overlay slurry coating consisting of silica particles embedded in a matrix of alumina and chromia was also examined. The final coating to be investigated was a pack‐aluminised sample of P92. All the coating systems examined showed superior oxidation resistance compared to the 9%Cr steel substrate (P91 or P92) in extended exposures to a steam environment at 650 °C. However, in service component lifetime will be limited by degradation of the coating, therefore it is essential that the mechanisms controlling this behaviour are understood. This paper reviews several degradation mechanisms that have been observed during long‐term exposure of these coatings. The mechanisms that have been observed include depletion of active alloying elements, diffusion of aluminium into the substrate from the coating, formation of Kirkendall porosity and mechanical failure of the coatings. Examples of each of these mechanisms will be presented. Possible processing routes to avoid these degradation mechanisms will also be discussed. 相似文献
13.
研究了不同成分和结构的NiWP合金镀层的硬度、耐蚀性及在液固双相流中的抗冲刷腐蚀性能,并对镀层表面膜进行了XPS分析,结果表明:镀层中钨含量的增加有利于提高镀层的硬度、耐蚀性和抗冲刷腐蚀性能。由Ni(OH)2,WO3,Ni3(PO4)2组成的表面膜具有较强的修复能力,这是使镀层具有优异抗冲刷腐蚀性能的主要因素之一。400℃以下较低温度的热处理提高了镀层的硬度,但削弱了镀层的耐蚀性,然而对抗冲刷腐蚀性能却略有提高。 相似文献
14.
In order to achieve a reasonable lifetime of automotive exhaust components, a large number of high alloyed ferritic and austenitic stainless steels are used nowadays. It is a common concept that the lifetime of a component is directly related to the performance of steel against corrosion. The components are divided into different sections depending on their service temperatures. High temperature oxidation resistance is one of the properties which are required in different sections. The effect of material sensitization on corrosion resistance of stainless steels is well understood from the literature. Besides, sensitization materials in exhaust systems have to withstand different cyclic heating and cooling phases. The objective of this study was to develop a basic understanding that can determine the influence of different temperature treatments on stainless steels. A fundamental understanding on the interaction of sensitization and cyclic heat impacts are presented in the paper. 相似文献
15.
16.
17.
利用新型高温梯度(GL=256~1300K/cm)定向凝固装置,研究了籽晶法制备含细亚结构的镍基高温合金DD3单晶及二元模型合金Al0.85%Cu晶体生长过程的组织演化与选择特征中的非稳态组织特性,特别是定向胞状振荡性微观结构的组织特征及其与定向凝固工艺条件的关系,并将其与在晶体生长透明有机物模拟装置Jackson温度平台(GL可达150K/cm)上原位观察到的CBr4定向生长结果相对比,从而分析其形成机制,探索有效控制和利用该现象的工艺途径。 相似文献
18.
铸造镍基高温合金K447的高温氧化行为 总被引:2,自引:0,他引:2
用静态增重法测定了铸造镍基高温合金K447在700℃~950℃空气中的恒温氧化行为,其氧化动力学符合抛物线规律.在900℃以下为完全抗氧化级,在900℃~950℃为抗氧化级.X射线衍射、扫描电镜和能谱分析表明,K447氧化膜分为3层:外层是疏松的Cr2O3和TiO2的混合物,并含有少量的NiO及NiCr2O4尖晶石;中间层是Cr2O3;内氧化物层是Al2O3,并含有少量TiN. 相似文献
19.
20.
It is essential for materials used at high‐temperatures in corrosive atmosphere to maintain their specific properties, such as good creep resistance, long fatigue life and sufficient high‐temperature corrosion resistance. Usually, the corrosion resistance results from the formation of a protective scale with very low porosity, good adherence, high mechanical and thermodynamic stability and slow growth rate. Standard engineering materials in power generation technology are low‐Cr steels. However, steels with higher Cr content, e.g., austenitic steels, or Ni‐base alloys are used for components applied to more severe service conditions, e.g., more aggressive atmospheres and higher temperatures. Three categories of alloys were investigated in this study. These materials were oxidised in laboratory air at temperatures of 550°C in the case of low‐alloy steels, 750°C in the case of an austenitic steel (TP347) and up to 1000°C in the case of the Ni‐base superalloys Inconel 625 Si and Inconel 718. Emphasis was put on the role of grain size on the internal and external oxidation processes. For this purpose various grain sizes were established by means of recrystallization heat treatment. In the case of low‐Cr steels, thermogravimetric measurements revealed a substantially higher mass gain for steels with smaller grain sizes. This observation was attributed to the role of alloy grain boundaries as short‐circuit diffusion paths for inward oxygen transport. For the austenitic steel, the situation is the other way round. The scale formed on specimens with smaller grain size consists mainly of Cr2O3 with some FeCr2O4 at localized sites, while for specimens with larger grain size a non‐protective Fe oxide scale is formed. This finding supports the idea that substrate grain boundaries accelerate the chromium supply to the oxide/alloy phase interface. Finally, in the Ni‐base superalloys deep intergranular oxidation attack was observed, taking place preferentially along random high‐angle grain boundaries. 相似文献