首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为研究静电场对瓦斯吸附作用的影响,运用EST802静电发生器对不同煤样分别施加0、4、8、12、16 k V的恒定电压,然后采用WY-98B吸附常数测定仪测定各煤样的瓦斯吸附量及Langmuir吸附常数a、b值。得出:在相同实验条件下,加场前后煤样瓦斯吸附量随电压升高而增加,b值相对a值变化明显,且呈增大趋势;对于不同煤阶不同破坏类型煤样受静电场影响程度上有:中高变质的烟煤大于无烟煤,软煤大于硬煤,且煤岩组分对含瓦斯煤样的电场响应程度影响较大。  相似文献   

2.
《煤矿安全》2016,(11):4-7
采用直流电场作为物理场,研制了一种直流电场作用煤瓦斯吸附性试验装置,在该装置上对煤瓦斯的吸附性进行了试验研究,并进一步分析了电场作用对煤瓦斯饱和吸附量和吸附常数等吸附性质的影响。试验结果表明:直流电场作用能够降低煤对瓦斯的吸附性,对煤吸附瓦斯的吸附等温线有影响,且电压作用对煤瓦斯吸附量的影响大于频率对其的影响;直流电场作用下煤对瓦斯吸附的饱和吸附量和吸附常数减小,随着电压或频率的增加,煤对瓦斯的饱和吸附量呈线性规律减小,吸附常数呈指数规律减小。  相似文献   

3.
《煤炭技术》2016,(8):171-173
为研究温度、压力对煤吸附瓦斯性能的影响,进行了不同温度下煤的瓦斯等温吸附试验。试验测试出煤样在35℃、50℃、65℃、80℃、105℃下的等温吸附线。研究表明:随着温度的升高,同一压力下煤样的吸附量减小,温度越高,吸附量减小趋势越明显;温度相同时,煤样的吸附量随着压力的增大而增大;在某一温度区间内,随着温度的升高,煤样的吸附常数a、b值线性递减。  相似文献   

4.
王小聪  黄再娟 《煤炭与化工》2024,(3):119-121+125
瓦斯吸附常数是煤层瓦斯基础参数中重要组成部分,通过采集平顶山矿区深部煤层不同地点煤样,利用WY-98A型瓦斯吸附常数测定仪进行高压等温吸附试验,试验结果表明,吸附曲线符合langmuir吸附方程,吸附曲线随着吸附压力升高,先表现为吸附量急剧增大,后吸附量缓慢增加,当吸附压力达到5 MPa左右时,吸附曲线平缓,逐渐达到极限吸附量。在吸附阶段前期,吸附瓦斯量快速增加,在饱和吸附量中占比超过70%,同时瓦斯吸附量与煤质参数中挥发分关系密切,呈现出挥发分越大、吸附量越小的反比关系。  相似文献   

5.
煤的瓦斯放散初速度指标△p在判定煤矿是否具有突出危险性中起到重要作用。通过从全国13个省市的77个煤矿采取77个煤样,在实验室实测煤样的水分、灰分、挥发分、真密度、视密度、孔隙率、常压瓦斯吸附量、瓦斯吸附常数、煤的坚固性系数、瓦斯放散初速度等11个瓦斯基础参数,利用SPSS数据分析软件,采用逐步多元线性回归法进行统计分析,得出对△p产生显著影响的因素为常压瓦斯吸附量、瓦斯吸附常数b和煤的坚固性系数,且常压瓦斯吸附量对△p的影响最为显著。试验结果表明:常压瓦斯吸附量和瓦斯吸附常数b与△p呈正相关性;煤的坚固性系数与△p呈负相关性,同时建立了多元线性回归模型,拟合相关系数为0.892。  相似文献   

6.
《煤矿安全》2017,(10):143-147
针对瓦斯吸附常数测定实验中瓦斯吸附量出现负值的问题,从瓦斯吸附量相关参数、测量误差方面进行分析,得出了煤样质量损失、空罐容积误差、真密度误差、高压吸附平衡时间是影响瓦斯吸附量出现负值的主要因素,并提出了解决方法,为准确地测定瓦斯吸附常数提供了参考。  相似文献   

7.
基于恒温动态吸附解吸试验的瓦斯解吸方程探讨   总被引:1,自引:0,他引:1  
为了研究煤层瓦斯赋存、瓦斯吸附解吸规律以及瓦斯流动理论,设计了瓦斯吸附解吸的试验方案,研究了同一煤质、不同粒径煤样的等温吸附解吸特性.研究表明:定压动态下的瓦斯解吸量与时间的变化曲线与前人得到的函数曲线能够很好地吻合,建立了瓦斯吸附解吸的数学模型,发现煤样压力和煤样粒径分别对解吸量Q函数中的吸附常数a和b有影响.并通过恒温变压吸附解吸试验,分析了在解吸过程中突然改变煤层压力时的解吸方程,结果表明,改变解吸过程的煤层压力,煤体的解吸过程依然符合瓦斯吸附解吸数学模型.  相似文献   

8.
为研究同一煤层煤体孔隙结构及其瓦斯吸附性能与埋深的关系,通过等温吸附试验、低温N2吸附试验,测定了4个不同埋深煤样的瓦斯吸附量和孔容、孔比表面积等孔隙结构参数,应用孔隙分形理论研究了不同埋深煤样的分形特征,并确定了孔隙结构参数与吸附常数的关系。结果表明:随着埋深的增加,煤样的孔比表面积增加,瓦斯吸附量增加;4个煤样中埋藏最深的煤样较最浅煤样比表面积增加了1.2603 m2/g,总孔容减小了0.0026 mL/g,瓦斯吸附量增加了67%,吸附饱和度降低了7.4%;吸附常数a与孔比表面积和分形维数的幂函数呈正相关关系,吸附常数b与吸附常数a呈幂函数关系。因此,可根据不同埋深煤样孔隙结构参数量化瓦斯吸附性能,为细化同一煤层瓦斯灾害防治方案提供了理论依据。  相似文献   

9.
为了减少煤样取心过程瓦斯漏失量和准确测定煤层瓦斯含量,提出了煤样冷冻取心技术,并开展了环境温度对煤体瓦斯吸附特性的影响研究。采用自制温控吸附装置,在20、-10、-20、-30℃条件下,对不同变质程度的无烟煤、贫煤、气肥煤的瓦斯等温吸附特性进行测试,分析环境温度对煤体瓦斯吸附特性影响,研究煤体降温对促进瓦斯吸附的影响规律。研究结果表明:煤体瓦斯饱和吸附量随温度降低线性增大,且随单位温度降低,气肥煤、贫煤和无烟煤饱和吸附量分别增大0.130、0.148、0.189 cm3/g。同时环境温度降低,随之瓦斯吸附平衡压力增大,煤体瓦斯吸附增量百分比先速减,而后缓减直至趋于稳定。降温促进了煤体对瓦斯的吸附,且环境温度越低,煤体对瓦斯的促吸效果越明显。同一吸附平衡压力下,降低单位温度瓦斯吸附增量百分比仅与煤的性质有关,与其温度环境无关。  相似文献   

10.
煤与瓦斯突出物理模拟相似准则建立与分析   总被引:1,自引:0,他引:1       下载免费PDF全文
相似准则是物理模拟的理论依据,是研发相似材料确定试验条件的基本前提。煤与瓦斯突出物理模拟相似准则是制约模拟试验发展的瓶颈。针对描述煤与瓦斯突出全过程的力学模型尚未建立的现状,尝试采用描述突出孕育阶段的气固耦合模型进行相似准则推导。基于气固耦合方程,采用相似变换法推导了相似准数。该组相似准数可保证煤岩变形破坏规律相似,却难以发生突出现象。提出了采用能量模型推导煤与瓦斯突出相似准则的思路。改进了前人的能量方程,经过相似变换导出了新的相似准数。该组相似准数可保证试验模型与原型能量集聚、转移和释放规律相似。结合两组相似准数,在保证能量模型相似的基础上,考虑煤岩变形破坏规律相似,确定了煤与瓦斯突出物理模拟相似准则。与前人的物理模拟试验结果进行对照,验证了相似准则的合理性。  相似文献   

11.
为研究安阳矿区构造煤瓦斯扩散动力学特性,在大众矿、龙山矿和贺驼矿分别采取2个(共6个)煤样。采用工业分析、高压吸附试验和瓦斯解吸试验等方法分析煤样的多元物性参数。运用球形扩散模型,采用Origin软件拟合解吸数据,计算出瓦斯扩散系数。结果表明,大众矿、龙山矿和贺驼矿煤样的挥发分分别为20.16%,12.10%和19.01%,变质程度由高到低为:龙山矿>贺驼矿>大众矿;大众、龙山和贺驼煤样的吸附常数a分别为37.26,52.36,41.30 m3/t,瓦斯吸附能力由大到小为:龙山矿>贺驼矿>大众矿;龙山矿、大众矿和贺驼矿煤样扩散系数分别为9.567 5×10-10,5.294 3×10-10,2.384 7×10-10 m2/s,瓦斯扩散能力由大到小为:龙山矿>大众矿>贺驼矿。表明龙山构造煤瓦斯吸附和扩散能力最强,煤与瓦斯突出危险性最大。  相似文献   

12.
随煤矿采掘深度增加,瓦斯治理越来越困难,利用合理的微生物来进行矿井瓦斯治理是一种新的尝试和思路。本文选取自主培养的甲烷氧化菌混合菌群液浸泡后的煤样、浸水煤样及原煤开展煤样瓦斯吸附解吸试验,试验研究结果发现,经过甲烷氧化菌混合菌群液浸泡后的煤样的瓦斯吸附量大于原煤的瓦斯吸附量,大于浸水煤样的瓦斯吸附量,分析试验数据得到代表煤样极限吸附量的瓦斯吸附常数a值也存在相同的规律。  相似文献   

13.
为研究煤的纳米级(100 nm)孔隙对瓦斯吸附能力的影响,对3种不同煤样的原煤和构造煤孔隙结构进行研究,并建立温度-压力综合吸附模型分析煤体的吸附瓦斯能力。研究结果表明:纳米级孔隙(孔径小于100 nm)是煤对瓦斯吸附强的决定因素,纳米级孔隙微孔的比表面积是影响瓦斯吸附量的主要因素;在相同温度压力下,古汉山矿煤样瓦斯吸附量是薛湖矿煤样和平顶山矿煤样的1.3~1.8倍和1.02~1.2倍;微小孔的孔容与瓦斯吸附量呈现出明显的正相关;通过建立温度-压力模型预测瓦斯吸附量是可行的。  相似文献   

14.
《煤矿安全》2021,52(6):12-16,23
为了探究选择合适的酸液对煤体进行改性增透,开展了不同pH值酸液改性煤样的吸附特性实验研究。通过采集焦煤煤样,制备了原煤及不同pH值酸化改性煤样8组试样,分别对试样进行了工业分析和物理参数测试,进而开展了等温瓦斯吸附实验。实验结果表明:相对于原煤试样而言,酸化改性在不改变煤样挥发分的情况下能减小煤样的灰分;改性试样的真密度与原煤煤样的真密度差别不大,而视密度都略有减小;随着压力的增大,改性煤样的瓦斯吸附能力明显大于原煤煤样,吸附常数a随着pH值的增大(pH=1除外)而减小,吸附常数b随着pH值的增大总体上呈减小趋势。研究表明:对于特定煤层选择合适的pH值溶液进行改性,可改变煤体的孔隙结构从而增加煤体的吸附能力,实现煤层增透效果。  相似文献   

15.
为了进一步加快卸压抽采,针对低透气性、强吸附煤层瓦斯区域治理工作的需要,通过大量的实验室模拟和分析,研究了中马村矿强吸附煤层不同吸附平衡状态下的瓦斯解吸规律。结果表明:同一煤样平衡压力越高,吸附瓦斯量越多,在同一时间段内进行解吸时,解吸速度越快、单位时间解吸量也越多;加快煤层瓦斯解吸需要具备一定的卸压空间,缩短瓦斯运移的通道;煤样粒度越大其孔裂隙内的游离瓦斯量越多,越不利于释放。  相似文献   

16.
为研究煤与瓦斯突出发生前后煤层温度演化规律,利用多场耦合煤矿动力灾害物理模拟试验系统,开展了气-固耦合条件下的煤与瓦斯突出物理模拟试验,并监测了突出发生前后的煤层瓦斯压力与温度.研究表明:在突出发生之前,煤层在吸附瓦斯过程中煤体温度随着瓦斯压力的增大而逐渐升高,煤层在达到吸附平衡后,煤体温度上升了2.6℃,位于煤层中心位置处的煤体温度明显高于边缘位置处;突出发生后,距离突出口较近的断面内煤体温度会出现突降现象,断面中心位置处温度下降量明显较大,而在距离突出口较远的断面,温度变化趋势与之相反;突出过程为热力学多变过程,煤体温度降低是由游离瓦斯膨胀做功和吸附瓦斯解吸造成的,煤体温度下降量和瓦斯膨胀能随着瓦斯解吸量的增加而增大.  相似文献   

17.
煤低压吸附瓦斯变形试验   总被引:7,自引:0,他引:7       下载免费PDF全文
在瓦斯抽采和煤炭开采过程中,始终伴随着煤对瓦斯的吸附和解吸,煤吸附瓦斯发生膨胀变形,解吸瓦斯发生收缩变形。利用自制的吸附解吸试验装置,测试了煤在低压吸附瓦斯过程中煤体变形规律。试验结果表明:煤样在同一瓦斯压力下的吸附变形分为快速增长、缓慢增长、平衡3个阶段;煤体吸附瓦斯膨胀变形呈各向异性,垂直层理方向和平行层理方向的变形整体变化趋势呈现一致性;在等梯度加压吸附过程中,随着吸附瓦斯压力的不断增大,煤样吸附膨胀变形梯度值逐渐呈增大趋势;一次加压吸附煤膨胀变形量小于等梯度加压吸附至相同吸附压力值时的累积变形量。  相似文献   

18.
为揭示不同粒径下煤样的瓦斯吸附热力学特性,选择典型矿井煤样进行不同粒径、温度条件下的瓦斯等温吸附实验,利用Clausius-Clapeyron方程计算出各煤样等量吸附热;根据Langmuir方程建立了含标准平衡压力常数的瓦斯吸附自由能方程,得到其吸附自由能;通过Gibb-Helmholtz方程获得各煤样的吸附熵。研究结果表明:不同粒径、温度影响因素下的煤体瓦斯吸附过程依旧可用Langmuir方程表征;不同粒径煤样瓦斯等量吸附热、吸附自由能和吸附熵均小于0,变化范围分别为-14.19~-22.27 k J/mol、-4.83~-6.72 k J/mol和-28.20~-51.32 J/(mol·K);随着粒径增大,煤样瓦斯等量吸附热、吸附自由能、吸附熵均增大;随着温度升高,煤样瓦斯吸附自由能、吸附熵逐渐降低。实验结果表明,煤体瓦斯吸附过程是一种放热、自发、熵减小的物理吸附过程。  相似文献   

19.
为探究压力对瓦斯吸附规律的影响,设计并组装了瓦斯恒温定压动态吸附实验系统,研究了4种煤样在4组不同初始瓦斯压力下的吸附特性。通过处理实验数据,得到不同初压下的累计瓦斯吸附量随时间变化的实测曲线和吸附速率随时间变化的实测曲线,进而建立了与实测曲线拟合度很高的瓦斯吸附数学模型。结果表明:煤样瓦斯的极限吸附量与压力呈正相关;瓦斯吸附的初压越大,吸附速率越快。  相似文献   

20.
《煤矿安全》2021,52(6):6-11
煤体粉化程度的大小易导致煤中瓦斯吸附状态的差异,对煤孔内瓦斯的运移时间具有重要影响,研究结果对提高煤中瓦斯含量测定精度具有重要作用。以马场矿4个粒径级别粉煤为研究对象,开展了各粒径煤粉的吸附量及吸附平衡时间等吸附性能测定工作。主要研究结论如下:粒径级越小,煤样吸附瓦斯量越大,测定结果可分为"微米级、十微米及小粒径百微米级、大粒径百微米级及毫米级"4个等温线分级;同时,煤样吸附平衡时间随粒径减小而急剧缩短,即由毫米级粒径煤样的数天,缩短至微米级粒径煤样的5 min,说明粒径的改变,可直接影响煤样内瓦斯扩散路径的复杂程度,进而影响吸附平衡时间。综合分析可知,百微米粒径煤样可明显缩短吸附平衡时间且提高瓦斯含量测定精度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号