首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Duolite ES‐467 was used to treat wastewater containing heavy metal ions. Sorption experiments were carried out at varying pH values, agitation speeds, reaction times, and metal ion and sorbent concentrations. Each of the parameters affects the sorption behaviour of individual metal ions. Copper sorption was greater compared with other metal ions such as zinc, nickel and cobalt. The presence of other metal ions affects copper sorption. Equilibrium isotherm curves were developed. These were used to predict that the metal ion concentration would be reduced from 100 to less than 1 mg dm?3. Fixed bed tests were conducted to investigate the efficiency of Duolite ES‐467 for the selective removal of copper ions from multi‐metal solutions. Breakthrough curves were obtained using Duolite ES‐467 for solutions containing copper, nickel and copper, zinc, nickel and cobalt. Elution studies were also carried out using sulfuric acid. © 2002 Society of Chemical Industry  相似文献   

2.
A new chelating ion‐exchange resin containing the hydroxamic acid functional group was synthesized from poly(methyl acrylate) (PMA)‐grafted sago starch. The PMA grafted copolymer was obtained by a free‐radical initiating process in which ceric ammonium nitrate was used as an initiator. Conversion of the ester groups of the PMA‐grafted copolymer into hydroxamic acid was carried out by treatment of an ester with hydroxylamine in an alkaline solution. The characterization of the poly(hydroxamic acid) chelating resin was performed by FTIR spectroscopy, TG, and DSC analyses. The hydroxamic acid functional group was identified by infrared spectroscopy. The chelating behavior of the prepared resin toward some metal ions was investigated using a batch technique. The binding capacities of copper, iron, chromium, and nickel were excellent and the copper capacity was maximum (3.46 mmol g−1) at pH 6. The rate of exchange of the copper ion was very fast that is, t1/2 < 5 min. It was also observed that the metal ion‐sorption capacities of the resin were pH‐dependent and its selectivity toward the metal ions used is in the following order: Cu2+ > Fe3+ > Cr3+ > Ni2+ > Co2+ > Zn2+ > Cd2+ > As3+ > Pb2+. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 79: 1256–1264, 2001  相似文献   

3.
Gallium, which is extensively used in the production of semiconductor materials, is present at the parts per million level in Bayer's liquor. The low concentration of gallium in the liquor, along with the high concentration of aluminum, prompted the use of chelating ion exchangers as an alternative separation process. A chelating ion exchange resin with hydroxamic groups attached to the copolymer of acrylonitrile‐divinylbenzene has been prepared by suspension polymerization followed by hydrolysis and chelation with hydroxylamine hydrochloride. Adsorption studies of gallium, using the above hydroxamic acid resin, were carried out. Adsorption was dependent on particle size of the resin and optimum conditions are determined for obtaining 0.3‐ to 0.5‐mm particles by varying the composition of the emulsion, using a secondary polymerization technique, and adding of diluents. Acrylic acid, as a diluent in the copolymer matrix, was found to increase the particle size and stability of the resin. IR studies, carried out for the products obtained at various stages, confirmed the conversion of polymer to resin with a hydroxamic acid group and its complex formation with gallium. Both batch and column studies were carried out for the determination of the capacity of the resin with synthetic Bayer's liquor containing gallium and commercial Bayer's liquor. Scaled‐up column studies were carried out with commercial Bayer's liquor to test the cyclability and stability of the resin. It was observed that chelated ion exchange resin could be recycled up to 30 times. The optimal liquid to solid phase ratio was found to be 1:12. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 847–855, 2004  相似文献   

4.
Gallium extraction studies were carried out using resin containing an hydroxamic acid functional group. Extraction was dependant on reaction time and alkali concentration. The resin did not extract aluminium. Vanadium extraction kinetics were slower than those of gallium. The gallium and vanadium separation efficiency increased with decreasing contact time with extractions of 64% and 32% respectively after 1 min. Gallium extraction was independent of alkali concentration up to 250 g dm?3 and thereafter decreased with increasing alkali concentration. Vanadium extraction decreased with increasing alkali concentration. Cyclic batch and column studies were carried out with synthetic as well as actual Bayer liquor to test the stability and preferential extraction of gallium using the resin. It was observed that using resin partially loaded with gallium, the co‐extraction of vanadium could be minimised. Copyright © 2003 Society of Chemical Industry  相似文献   

5.
A new chelating resin is prepared by coup‐ling Amberlite XAD‐2 with salicylic acid (SAL) through an azo spacer. Then the polymer support was coupled with iminodiacetic acid (IDA). The resulting sorbent has been characterized by FT‐IR, elemental analysis, thermogravimetric analysis (TGA), and scanning electron microscopy (SEM) and studied for the preconcentration and determination of trace Pb (II) ion from human biological fluid and environmental water samples. The optimum pH value for sorption of the metal ion was 5. The sorption capacity of functionalized resin is 67 mg g−1. The chelating sorbent can be reused for 20 cycles of sorption–desorption without any significant change in sorption capacity. A recovery of 95% was obtained for the metal ion with 0.5M nitric acid as eluting agent. The profile of lead uptake on this sorbent reflects good accessibility of the chelating sites in the Amberlite XAD‐2‐SAL/IDA. Scatchard analysis revealed that the homogeneous binding sites were formed in the polymers. The equilibrium adsorption data of Pb (II) on modified resin were analyzed by Langmuir, Freundlich, Temkin, and Redlich‐Peterson models. Based on equili‐brium adsorption data the Langmuir, Freundlich, and Temkin constants were determined 0.428, 20.99, and 7 × 10−12 at pH 5 and 20°C. The method was successfully applied for determination of lead ions in human plasma and sea water sample. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

6.
Abstract

Ion exchange behavior of some selected elements on Chelex 100 ion exchange resin in weakly acidic medium has been investigated. The acidity and the concentration of the supporting electrolyte have considerable influence on the sorption of metal cations by the ion exchanger. Column experiments have revealed that elution of cobalt and zinc in the definite pH range exhibits certain deviation compared to the other examined elements, resulting in doubly peaked elution curve. Apart from the commonly known cation (chelating) exchange function, under appropriate conditions Chelex 100 can also act as an anion exchanger. Ion exchange behavior of mercury in diluted hydrochloric acid medium is an illustration of amphoteric character of this resin. Two regions of pH can be distinguished, which correspond to the specified sorption mechanism of the metal by Chelex 100. In practical aspect, the use of Chelex 100 for the separation of trace amounts of several selected elements is demonstrated.  相似文献   

7.
Terpolymers (2,4‐DHPBF) were synthesized by the condensation of 2,4‐dihydro‐xypropiophenone, biuret, and formaldehyde in the presence of acid catalyst with varying the molar ratio of reacting monomers. Terpolymer composition has been determined on the basis of their elemental analysis and their number–average molecular weight of these resin were determined by conductometric titration in nonaqueous medium. The viscosity measurements were carried out in N,N‐dimethyl formamide which indicate normal behavior. IR spectra were studied to elucidate the structure. The terpolymer resin has been further characterized by UV–visible and 1H‐NMR spectra. The newly synthesized terpolymers proved to be selective chelating ion‐exchange terpolymers for certain metals. The chelating ion‐exchange properties of this terpolymer was studied for Fe (III), Cu (II), Hg (II), Cd (II), Co (II), Zn (II), Ni (II), and Pb (II) ions. A batch equilibrium method was employed in the study of the selectivity of metal ion uptake involving the measurement of the distribution of a given metal ion between the terpolymer sample and a solution containing the metal ion. The study was carried out over a wide pH range and in media of various ionic strengths. The terpolymer showed a higher selectivity for Fe (III), Hg (II), Cd (II), and Pb (II) ions than for Cu (II), Co (II), Zn (II), and Ni (II) ions. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

8.
In order to explore the possibility of using cross-linked poly(4-vinyl pyridine), PVP, for selective removal of cyanide in waste water by complexation of the cyanide with ferrous ion followed by ion exchange, the sorption behaviour of the anionic ferrocyanide complex (Fe(CN)64-) on the resin operating in an acid salt form has been studied. The results are compared with those obtained on a conventional gel-type weak base resin, Amberlite IRA-68. The ferrocyanide complex is selectively sorbed in preference to other common ions and is readily stripped with dilute sodium hydroxide. PVP has a high sorption capacity, fast sorption kinetics and a rapid rate of regeneration, being much superior to Amberlite IRA-68 in all these respects. The sorption rate is film-diffusion controlled at low solution concentrations (< 0.8 mmol litre?1) and particle-diffusion controlled at higher concentrations (> 0.8 mmol dm?3). Lowering pH to ~ 1 increases the sorption of Fe(CN)64? on to protonated PVP by 75% over that at pH 7, a phenomenon explained by the formation of protonated ferrocyanide species, HFe(CN)63- and H2Fe(CN)62-. From column operations with 156 mg dm?3 cyanide waste stream a capacity of 73 mg CN? g?1 of protonated PVP to 1 mg dm?3 breakthrough is determined, compared to 60 mg CN? g?1 of protonated IRA-68.  相似文献   

9.
Ion‐exchange textiles (IETs) suitable for use in continuous electrodeionization (CEDI) stacks were prepared using the ultraviolet (UV)‐induced grafting of acrylic acid and sodium styrene sulfonate for cation‐exchange textiles, or 2‐hydroxyethyl methacrylate and vinylbenzyl trimethyl ammonium chloride for anion‐exchange textiles, onto nonwoven polypropylene fabric using benzophenone as photoinitiator. Although the ion‐exchange capacity (2.2 meq g?1) of the prepared strong acid cation‐exchange textile was lower than that of IRN77 strong acid cation‐exchange resin (4.2 meq g?1), the overall rate constant of IET was very high due to its low crosslinking and high specific surface area. There was no significant difference between the two different media in terms of the Co(II) removal rate. Furthermore, the current efficiency for IETs was higher than that of IRN77 cation‐exchange resin during a CEDI operation, with efficiencies of 60% and 20%, respectively. The IET also showed the faster exchange kinetics. Therefore, IETs prepared in this study proved to have desirable ion‐conducting characteristics within the CEDI systems. Also this study revealed that the primary removal mechanism in CEDI is the transport of ions through a medium and not the ionic capacity of a medium. Copyright © 2004 Society of Chemical Industry  相似文献   

10.
An ion‐exchange resin containing carboxylic acid groups was prepared by reaction of epoxidized soybean oil with triethylene tetramine, followed by hydrolysis of glycerides by using sodium hydroxide solution. The cation exchange capacity of the resins was determined to be 3.50 mequiv/g. The adsorption capacity for Cu2+, Ni2+, and Co2+ on the obtained resin at pH 5.0 was found to be 192, 96, and 78 mg/g, respectively. Effect of pH on the adsorption capacity for copper (II), nickel (II), and cobalt (II) ions were also studied. Cu2+, Ni2+, and Co2+ were adsorbed at a pH above 3. These metal ions adsorbed on the resin are easily eluted by using 1N HCl solution. The selectivity of the resin for Cu2+ from mixtures containing Cu2+/Co2+/Ni2+ ions in the presence of sodium chloride was also investigated © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 2386–2396, 2002  相似文献   

11.
Distribution coefficients of 23 elements between chelating resin Duolite ES 346 containing amidoximo groups and glycine - HCl buffer /pH = 2 - 3.5/, acetate buffer /pH = 3.6 - 5.6/ and HCl solutions /0.05 - 12M/ respectively were measured by batch equilibration at tracer loadings. While alkali and alkaline earth metals are practically not retained by the resin, transition and other metal ions show quite differentiated pattern of selectivity. The resin exhibits amphoteric properties and in certain conditions both cations and anions can be simultaneously adsorbed. Selectivity reversal for some pairs of metal ions can be achieved employing either cation exchange or anion exchange function of Duolite ES 346. Quantitative separations of Zn-Fe, Cd-In, Zn-Hg, Co-Cu, Zn-Re-Ga and Pt-Pd mixtures with the use of short columns of the resin have been demonstrated.  相似文献   

12.
Crosslinked poly(acrylic acid) (XPAA) made by copolymerization of acrylic acid and ethylene glycol dimethacrylate in bulk was further reacted with 80% ethoxylated polyethyleneimine, and the latter insolubilized by treatment with glutaraldehyde. The resulting composite sorbent, XPAA(EPEI.XG), containing carboxylic acid groups and weakly basic tertiary amine groups in close proximity in the same resin bead exhibited thermally regenerable desalination property, simulating the well‐known Sirotherm? resins. For NaCl and MgCl2, the sorbent has saturation capacities of 0.796 and 0.839 meq/g (dry) sorbent, respectively, at 30°C but less than 0.1 meq/g (dry) sorbent at 80–90°C. The equilibrium sorption data at 30°C fit well to both Langmuir and Freundlich isotherms for single‐component sorption and to Butler‐Ockrent and Jain‐Snoeyink models for bicomponent sorption. Although the sorption of NaCl exhibits a plateau in the pH range of 4–5, that of MgCl2 increases sharply above pH 4 because of additional sorption by cation exchange at the ionic sites formed at higher pH. The sorption rate data show characteristics of particle‐diffusion controlled ion‐exchange process, yielding diffusivity values of 1.0–1.3 × 10?6 cm2/s for NaCl and 3.0–3.5 × 10?7 cm2/s for MgCl2, in the initial period at 30°C, with the diffusivity falling abruptly in both cases at higher conversions. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

13.
The chelating ion exchange resin – Dowex M 4195 was used in palladium(II) complexes adsorption from the acidic solutions. This study discusses the sorption kinetics, and more specifically the interparticle diffusion behavior of palladium(II) onto Dowex M 4195. The adsorption studies were used to determine the amount of palladium(II) complexes uptake (resin loading), the distribution coefficients, and the recovery efficiency of Pd(II) complexes. The influence of the agitation speed, the beads size (mean radius of swollen particles), the palladium concentrations, as well as acid concentrations (ionic strength of solutions), the macrocomponent addition (sodium chloride), and the phases contact time was also discussed. Moreover, the effect of temperature was taken into account during the determination of the isotherms. The experimental data obtained at 100 µg/cm3 Pd(II) initial concentration were applied to the kinetic models, and the sorption parameters as well as the normal standard deviation were calculated. Moreover, the Langmuir, Freundlich, and Tempkin‐Pyzhev isotherm models were applied and the isotherms parameters were calculated.  相似文献   

14.
The removal of single component and binary mixtures of divalent cobalt and iron from water by ion exchange with synthetic Y zeolite has been studied in batch, semi‐batch and continuous modes of operation; the initial metal solution concentration did not exceed 2 mmol dm?3. Binary Co/Na and Fe/Na ion exchange equilibrium isotherms (294 K) are presented wherein exchange site heterogeneity is evident in the case of the iron treatment. Under conditions of stoichiometric ion exchange, removal efficiencies for both cobalt and iron decrease with increasing metal concentration (0.2–2 mmol dm?3) and the values were similar for both metals. Removal of cobalt under transient conditions was found to be temperature dependent. In the fixed bed operation, break‐through behavior was sensitive to changes in both flow rate and inlet concentration. The break‐through profiles for both metals under competitive and non‐competitive conditions are presented; iron removal is lower in the presence of cobalt and vice versa. An in situ regeneration of the fully loaded zeolite by back exchange with sodium is considered and the exchange capacity of the regenerated zeolite is reported. The feasibility of employing cycles of heavy metal uptake/zeolite regeneration is addressed. © 2002 Society of Chemical Industry  相似文献   

15.
This work reports the viability and modelling of the removal of Cr(VI) from polluted groundwaters by means of ion exchange using the resin Lewatit MP‐64. Feed groundwaters that contained Cr(VI) at an average concentration of 2431 mg dm?3 and 1187 mg dm?3 of chloride and 1735 mg dm?3 of sulfate as main anions were acidified to a pH of 2.0 prior to the removal process. Dynamic experiments were carried out in a fixed bed column with feed waters at flow rates in the range of 2.78 × 10?7 m3 s?1 to 5.55 × 10?7 m3 s?1. Regeneration was achieved with NaOH (2 mol dm?3). From the experimental results, the equilibrium of the ion exchange reaction was successfully modelled, obtaining an equilibrium constant (KAB) = 44.90. Finally, a mass balance that included mass transfer resistances in the liquid and solid phases was developed and from the comparison between simulated and experimental data the value of the effective intraparticle diffusivity (Ds) was determined as 1.43 × 10?12 m2 s?1. Copyright © 2004 Society of Chemical Industry  相似文献   

16.
Removal of calcium and magnesium ions in a salt solution with the macroreticular chelating resin containing aminomethylphosphonic acid groups was investigated. The resin (RMT-P) exhibited high affinity for calcium and magnesium ions in a salt solution containing 200 g/dm3 of sodium chloride. In the column method, calcium and magnesium ions in a salt solution were preferentially absorbed on the RMT-P, when the salt solution containing 100 mg/dm3 of calcium or magnesium ion was passed through the RMT-P column at a space velocity of 15 h?1. The calcium and magnesium ions adsorbed were eluted by allowing 1 mol/dm3 hydrochloric acid to pass through the column. The recycle of adsorption and elution was found to be satisfactory.  相似文献   

17.
A new fibrous adsorbent was prepared by grafting acrylic acid/acryl amide (AA/AAm) comonomers onto poly (ethylene terephthalate) (PET) fibers. The resulting sorbent has been characterized by Fourier transform infrared (FT‐IR), elemental analysis, thermogravimetric analysis (TGA), FT‐Raman, and scanning electron microscopy (SEM) and studied for the preconcentration and determination of trace Pb (II) ion from human biological fluid and environmental water samples. The optimum pH value for sorption of the metal ion was 8. The sorption capacity of functionalized resin is 44.1 mg g?1. The chelating sorbent can be reused for 20 cycles of sorption–desorption without any significant change in sorption capacity. A recovery of 100.2% was obtained for the metal ion with 0.5M nitric acid as eluting agent. Effect of grafting yield, shaking time, shape of sorbent, and pH of the medium on adsorption of the metal ion were investigated. Scatchard analysis revealed that the homogeneous binding sites were formed in the polymers. The equilibrium adsorption data of Pb (II) on modified fiber were analyzed by Langmuir, Freundlich, Temkin, and Redlich‐Peterson models. Based on equilibrium adsorption data, the Langmuir, Freundlich, and Temkin constants were determined as 0.236, 10.544, and 9.497 at pH 8 and 20°C, respectively. The method was applied for lead ions determination from human plasma and sea water sample. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

18.
A copolymer resin (p‐APDF) has been synthesized using the monomers p‐aminophenol, dithiooxamide, formaldehyde in 1 : 1 : 2M proportions in the presence of 2M HCl as catalyst. The structure of p‐APDF copolymer has been elucidated on the basis of elemental analysis and various physicochemical techniques, i.e., UV‐visible, FTIR, and 1H‐NMR spectroscopy. The number average molecular weight of copolymer resin was determined by nonaqueous conductometric titration in DMF. Viscosity measurement were carried out in DMF indicate normal behavior. The prepared resin proved to be a selective ion exchange resin for some metal ions. The chelating ion exchange properties of this resin was studied for Fe(III) and Cu(II), Ni(II), Co(II), Zn(II), Cd(II), Pb(II) ions. A batch equilibrium method was used to study selectivity of metal ion uptake over a wide pH range and in media of various ionic strength. The resin showed a higher selectivity for Fe(III), Ni(II), Cu(II) ions than for Co(II), Pb(II), Zn(II), and Cd(II) ions. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

19.
The metal‐ion uptake behavior of the chelating resin poly([(3‐(methacryloylamino)propyl] trimethyl ammonium chloride‐co‐4‐vinyl pyridine) has been investigated. The resin is obtained by radical copolymerization in a yield of 99.6%. The hydrophilic resin shows a high retention capacity and selectivity toward Hg(II) ions in the presence of Cu(II), Pb(II), Cd(II), Zn(II), and Cr(III) ions. A retention of Hg(II) higher than 99% is observed after 5 min. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 2595–2599, 2002  相似文献   

20.
Removal and recovery of gallium and indium ions in acidic solution with the macroreticular chelating resin containing aminomethylphosphonic acid groups was investigated. The resin (RMT-P) exhibited high affinity for gallium and indium ions in sulfuric acid solution. In the column method, gallium and indium ions in sulfuric acid solution (0.05 or 0.5 mol/dm3) were favorably adsorbed on the RMT-P when the solution containing 27.6 mg/dm3 of gallium ion or 51.4 mg/dm3 of indium ion was passed through the RMT-P column at a space velocity of 15 h?1. The gallium and indium ions adsorbed were eluted by allowing 1 mol/dm3 sodium hydroxide or 4 mol/dm3 hydrochloric acid to pass through the column. The proposed resin appears to be useful for the recovery of gallium and indium ions in sulfuric acid solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号