首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ion‐exchange textiles (IETs) suitable for use in continuous electrodeionization (CEDI) stacks were prepared using the ultraviolet (UV)‐induced grafting of acrylic acid and sodium styrene sulfonate for cation‐exchange textiles, or 2‐hydroxyethyl methacrylate and vinylbenzyl trimethyl ammonium chloride for anion‐exchange textiles, onto nonwoven polypropylene fabric using benzophenone as photoinitiator. Although the ion‐exchange capacity (2.2 meq g?1) of the prepared strong acid cation‐exchange textile was lower than that of IRN77 strong acid cation‐exchange resin (4.2 meq g?1), the overall rate constant of IET was very high due to its low crosslinking and high specific surface area. There was no significant difference between the two different media in terms of the Co(II) removal rate. Furthermore, the current efficiency for IETs was higher than that of IRN77 cation‐exchange resin during a CEDI operation, with efficiencies of 60% and 20%, respectively. The IET also showed the faster exchange kinetics. Therefore, IETs prepared in this study proved to have desirable ion‐conducting characteristics within the CEDI systems. Also this study revealed that the primary removal mechanism in CEDI is the transport of ions through a medium and not the ionic capacity of a medium. Copyright © 2004 Society of Chemical Industry  相似文献   

2.
3.
Kinetics and thermodynamics of the removal of Pb2+ from an aqueous solution by 732 cation‐exchange resin in hydrogen type (732‐CR) were studied in the temperature range of 298–328 K and Pb2+ concentration range of 5–50 mol/m3. The effects of ion exchange temperature and initial lead ion concentration on the time evolution of the experimental concentration for the metal ion were investigated. Ion exchange kinetics of Pb2+ onto 732‐CR follow the Nernst‐Planck equation and unreacted‐core model (UCM). The diffusion coefficients of counter ions and the efficient diffusion coefficient of lead ions within the resin were calculated. The results show that the ion exchange process is favoured under the particle diffusion control mechanism. The ion exchange isotherm data agreed closely with the Langmuir isotherm. The maximum monolayer exchange capacity for Pb2+ was found to be 484.0 mg/g at 308 K. Thermodynamic studies show that Pb2+ onto 732‐CR is spontaneous and exothermic in nature. The ion exchange processes were verified by Energy Disperse Spectroscopy (EDS).  相似文献   

4.
The asymmetric aluminum ion exchange polysulfone membranes have successfully been prepared for the dehydration of ethanol‐water mixture. The relationship between the membrane morphology, separation performance, and the ion content of membranes were discussed in this study. The experimental results showed that the separation performance of those membranes was increased upon increasing the degree of aluminum ion exchange in polysulfone membranes. Both permeation rate and separation factors of those membranes increased with increasing the degree of ion exchange. The increase in separation performance of aluminum ion exchange membranes was mainly attributed to ion crosslinking in polymer network and the hydration effects of exchanged ion in membranes. On the other hand, the operating temperature in the PV process showed a significant influence on the dehydration of water molecules in the permeate. An increase in temperature increased the permeation flux of permeate but slightly decreased its selectivity. The aluminum asymmetric ions in membranes showed a strong influence on permselectivity of asymmetric ion exchange membranes. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

5.
The ion‐exchange equilibrium of Pb(II) and Cd(II) on clinoptilolite from different deposits was studied in this work. The Langmuir isotherm fitted the ion‐exchange equilibrium data of both ions better than the Freundlich isotherm. The capacity of the natural zeolite to exchange Cd(II) and Pb(II) increased, augmenting the solution pH. This behaviour was attributed to the interactions between the ions in solution and the surface charge of the zeolite. Moreover, the capacity of the natural zeolite to exchange Cd(II) and Pb(II) was increased when the temperature was raised from 15 to 35 °C. This tendency was explained by assuming that the ion exchange was an endothermic reaction. The selectivity of the zeolite for the metal cations decreased in the following order: Pb(II) > Cd(II). This order was not modified while reducing the solution pH, but the zeolite selectivity was increased. At pH 2 the selectivity of the zeolite for Pb(II) was nearly three times larger than at pH 4. Copyright © 2006 Society of Chemical Industry  相似文献   

6.
Ion‐exchange textiles are used as organic supports for urease immobilization with the aim of developing reactive fibrous materials able to promote urea removal. A non‐woven, polypropylene‐based cation‐exchange textile was prepared using UV‐induced graft polymerization. Urease was covalently immobilized onto the cation‐exchange textile using three different coupling agents: N‐(3‐dimethylaminopropyl)‐N′‐ethylcarbodiimide hydrochloride (EDC), N‐cyclohexyl‐N′‐(b‐[N‐methylmorpholino]ethyl)carbodiimide p‐toluenesulfonate (CMC), and glutaraldehyde (GA). The immobilized biocatalyst was characterized by means of FT‐IR spectrometry, SEM micrographs, dependence of the enzyme activity on pH and temperature, and according to the kinetic constants of the free and immobilized ureases. The biotextile prepared with EDC in the presence of N‐hydroxysuccinimide performs best. The optimum pH was 7.2 for the free urease and 7.6 for the immobilized ureases. The reactivity was maximal at 45 °C for free urease, 50 °C for biotextiles prepared using EDC or CMC, and 55 °C for biotextiles prepared with GA. The activation energy for the immobilized ureases was 4.73–5.67 kcal mol?1, which is somewhat higher than 4.3 kcal mol?1 for free urease. The urea conversion for a continuous‐flow immobilized urease reactor is nearly as good as a continuously stirred tank reactor having a much longer residence time, suggesting that the packed bed reactor had sufficient diffusive mixing and residence time to reach nearly optimal results. Urease immobilized on a biotextile using EDC has good storage and operational stability. Copyright © 2006 Society of Chemical Industry  相似文献   

7.
BACKGROUND: Post‐treatment of zinc plated surfaces is required to provide corrosion protection; for this purpose chromium passivation is usually used. In the EU, the older hexavalent chromium passivation baths have been replaced by trivalent chromium conversion coatings. However, the life of Cr(III) passivation baths is reduced due to iron and zinc impurities generated in the process. Thus, the objective of this work was to investigate the regeneration of spent passivation baths from the plating industry by ion exchange using a new chelating resin (Purolite S‐957). RESULTS: Three genuine passivation baths with different iron and zinc concentrations were investigated; the effect of loading flow rate, temperature and resin regeneration conditions on the uptake of iron ions was also studied. The removal performance of iron was increased at higher temperature (55 °C) and lower flow rates. The best regeneration conditions were found to be 6 bed volumes (BV) of 30 wt% HCl. CONCLUSION: This work has shown that iron can be selectively removed from trivalent chromium passivation baths using a new chelating resin (Purolite S‐957) and no addition of chromium (III) is required. Low feed flow rate and high bath temperature (up to 55 °C) are recommended for high iron uptake. Copyright © 2008 Society of Chemical Industry  相似文献   

8.
Duolite ES‐467 was used to treat wastewater containing heavy metal ions. Sorption experiments were carried out at varying pH values, agitation speeds, reaction times, and metal ion and sorbent concentrations. Each of the parameters affects the sorption behaviour of individual metal ions. Copper sorption was greater compared with other metal ions such as zinc, nickel and cobalt. The presence of other metal ions affects copper sorption. Equilibrium isotherm curves were developed. These were used to predict that the metal ion concentration would be reduced from 100 to less than 1 mg dm?3. Fixed bed tests were conducted to investigate the efficiency of Duolite ES‐467 for the selective removal of copper ions from multi‐metal solutions. Breakthrough curves were obtained using Duolite ES‐467 for solutions containing copper, nickel and copper, zinc, nickel and cobalt. Elution studies were also carried out using sulfuric acid. © 2002 Society of Chemical Industry  相似文献   

9.
10.
BACKGROUND: (R)‐(‐)‐Mandelic acid (R‐MA) is an important intermediate and chiral regent with broad uses. An efficient method for the separation of R‐MA from the bioreaction mixture with high yield is of great importance, thus, the main objective of this work is to investigate the recovery of R‐MA using an ion‐exchange process. RESULTS: The equilibrium isotherms for the separation of R‐MA by resin HZ202 were obtained in the pH range 5.0–9.0 and temperature range 25–35 °C. The equilibrium data are well fitted by the Langmuir isotherm. Batch kinetic experiments showed that the mobility of R‐MA? in solution was rapid and the R‐MA?/OH? ion‐exchange process reached equilibrium after about 60 min. Adsorption kinetics were analyzed by a linear driving force mass‐transfer model, yielding good prediction of the kinetic behavior. In fixed bed column experiments, the breakthrough curves of R‐MA from the solution on resin HZ202 were determined at different flow rates and R‐MA was eluted with different concentrations of HCl. A favorable breakthrough curve and optimal eluant concentration were obtained. The results were used for the separation of R‐MA biosynthesized from (R,S)‐mandelonitrile with nitrilase, and separation was successfully achieved with above 90% recovery yield. CONCLUSION: Resin HZ202 presents favorable behavior for the recovery of R‐MA, in terms of capacity, kinetics, affinity, and susceptibility to regeneration. The results of this study provide an efficient method for R‐MA recovery from bioreaction mixture and could potentially be used in industry. Copyright © 2010 Society of Chemical Industry  相似文献   

11.
The removal of nickel from aqueous solutions streams has been investigated using an artificial amorphous crandallite‐type compound, CaAl3(OH)6(HPO4)(PO4) (Ca‐crandallite), synthesized in our laboratory. Equilibrium ion‐exchange isotherms in an aqueous medium of Ca2+/Ni2+ at different pH values at 293 K have been determined. The experimental equilibrium data were satisfactorily correlated using a Langmuir‐type empirical equation. At low pH values, the hydrogen ion competes with the heavy metal cation and the percentage removal of metal declines. It was found that the operating capacity of Ca‐crandallite with respect to the metal ion increased with the pH of the solution, in accordance with a second‐degree polynomial equation. However, the pH should not be allowed to rise to levels at which chemical precipitation as nickel hydroxide would occur, with 7.00 the highest value tested. Taking into account the variation of operating capacity with pH, the system exhibited a unique separation factor, namely all the experimental points can be described by a unique isotherm in a dimensionless form. The Ca‐crandallite showed a high capacity, 2.176 meq g?1, for the exchange of Ni(II) from nickel nitrate solutions and the rate of exchange of metal increases with increasing solution temperature due to the enhancement of effective intraparticle diffusivity. Copyright © 2005 Society of Chemical Industry  相似文献   

12.
The metal‐ion uptake behavior of the chelating resin poly([(3‐(methacryloylamino)propyl] trimethyl ammonium chloride‐co‐4‐vinyl pyridine) has been investigated. The resin is obtained by radical copolymerization in a yield of 99.6%. The hydrophilic resin shows a high retention capacity and selectivity toward Hg(II) ions in the presence of Cu(II), Pb(II), Cd(II), Zn(II), and Cr(III) ions. A retention of Hg(II) higher than 99% is observed after 5 min. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 2595–2599, 2002  相似文献   

13.
The effects of membrane structure on the separation of L ‐phenylalanine (L ‐Phe) by electrodialysis from a fermentation broth and on the fouling tendency were investigated in this study. Two anion‐exchange membranes (Neosepta AFX and AM‐1, Tokuyama, Japan) were selected and characterized using the chronopotentiometry method. For a fresh membrane, AFX showed a lower electrical resistance and a lower permselectivity than AM‐1. After being fouled with humic acid, however, the electrical resistance of AFX was higher than that of AM‐1. The L ‐Phe selectivities for both membranes were lower than those of the fresh membranes. The result may be attributed to the structural difference between AFX and AM‐1 membranes. AFX has a lower repulsion force against the co‐ion and could be more strongly affected by the foulants than AM‐1 because AFX has a more porous structure than AM‐1. Experiments on the separation of L ‐Phe from the fermentation broth were carried out using two different stack configurations, ie desalting electrodialysis and water‐splitting electrodialysis. It was observed that the recovery efficiency of L ‐Phe through electrodialysis for 100 min reached 95% for AFX and 85% for AM‐1. In the desalting configuration of electrodialysis, the solution pH must be adjusted to alkaline conditions to recover the L ‐Phe through the anion‐exchange membrane. On the contrary, it was possible to recover the L ‐Phe without adjustment of the solution pH in the water‐splitting electrodialysis because OH? generated from the bipolar membrane converted neutral L ‐Phe into an anion. © 2002 Society of Chemical Industry  相似文献   

14.
关刚 《中国氯碱》2014,(12):13-14
对螯合树脂塔运行方式进行阐述,分析双塔运行的可行性及三塔运行中操作周期延长的问题。  相似文献   

15.
BACKGROUND: Xylitol bioproduction from lignocellulosic residues comprises hydrolysis of the hemicellulose, detoxification of the hydrolysate, bioconversion of the xylose, and recovery of xylitol from the fermented hydrolysate. There are relatively few reports on xylitol recovery from fermented media. In the present study, ion‐exchange resins were used to clarify a fermented wheat straw hemicellulosic hydrolysate, which was then vacuum‐concentrated and submitted to cooling in the presence of ethanol for xylitol crystallization. RESULTS: Sequential adsorption into two anion‐exchange resins (A‐860S and A‐500PS) promoted considerable reductions in the content of soluble by‐products (up to 97.5%) and in medium coloration (99.5%). Vacuum concentration led to a dark‐colored viscous solution that inhibited xylitol crystallization. This inhibition could be overcome by mixing the concentrated medium with a commercial xylitol solution. Such a strategy led to xylitol crystals with up to 95.9% purity. The crystallization yield (43.5%) was close to that observed when using commercial xylitol solution (51.4%). CONCLUSION: The experimental data demonstrate the feasibility of using ion‐exchange resins followed by cooling in the presence of ethanol as a strategy to promote the fast recovery and purification of xylitol from hemicellulose‐derived fermentation media. Copyright © 2008 Society of Chemical Industry  相似文献   

16.
Electrodialysis (ED) can be applied in the food and fermentation industry for separating inorganic salts and organic ions from other fractions. However, the separation efficiency for small organic ions should be understood in detail. In this article, the membrane selectivity and transport mechanism of small organic ions from mixed salts by ion‐exchange membranes are theoretically and experimentally investigated. First of all, the influence of current density on the solute flux (organic ions and inorganic ions) and on membrane selectivity (between organic ions and inorganic ions and between different organic ions) in ED has been studied. The selectivity was shown to be influenced by changing the applied current density. It was observed that separation of inorganic ions from organic solutes was feasible, but the selectivity was dependent on the size, charge, and functional groups of the organic ions. Furthermore, results imply that binary organic anions with larger molar mass (>130, i.e., aspartate and tartrate) can be adsorbed onto the membrane free volume and hence form a charged double layer, which affects membrane selectivity. Finally, competition between small organic and inorganic ions is discussed by comparison of the concentration profiles and current efficiencies of the different anions. © 2010 American Institute of Chemical Engineers AIChE J, 2011  相似文献   

17.
The separation of strontium and cadmium ions in a system containing ethylenediaminetetraacetic acid (EDTA) as a complexing agent has been studied using a three‐compartment electrolytic cell. The results suggest that under the influence of an electric field, Sr ions were exclusively transported to the cathode as positively charged uncomplexed cations while cadmium ions removed from the middle compartment of the electrolytic cell migrated to the anode as negatively charged complexes. The effect of the EDTA complexing agent on the separation was studied within the pH range 2–4 at 100 mA (12.4 mA cm?2). Copyright © 2003 Society of Chemical Industry  相似文献   

18.
A copolymer (4‐HAOF) prepared by condensation of 4‐hydroxyacetophenone and oxamide with formaldehyde in the presence of an acid catalyst proved to be a selective chelating ion‐exchange copolymer for certain metals. Chelating ion‐exchange properties of this copolymer were studied for Fe3+, Cu2+, Ni2+, Co2+, Zn2+, Cd2+, Pb2+, and Hg2+ ions. A batch equilibrium method was employed in the study of the selectivity of metal‐ion uptake involving the measurements of the distribution of a given metal ion between the copolymer sample and a solution containing the metal ion. The study was carried out over a wide pH range and in media of various ionic strengths. The copolymer showed a higher selectivity for Fe3+ ions than for Co2+, Zn2+, Cd2+, Pb2+, Cu2+, Ni2+, and Hg2+ ions. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 787–790, 2003  相似文献   

19.
This study describes the performance of four different resins, in sequence, to detoxify sugarcane bagasse hemicellulosic hydrolysate and to improve xylitol production by calcium alginate‐entrapped Candida guilliermondii FTI20037 cells under conditions of low oxygen concentration. The treatment resulted in a removal of 82.1% furfural, 66.5% hydroxymethylfurfural, 61.9% phenolic compounds derived from lignin degradation, 100% chromium, 46.1% zinc, 28.5% iron, 14.7% sodium and 3.5% nickel. On the other hand, the removal of acetic acid was not significant. A xylitol yield factor (YP/S) of 0.62 g g?1 and a volumetric productivity (Qp) of 0.24 g dm?3 h?1 were attained in the fermentation process for xylitol production from detoxified hydrolysate. Copyright © 2004 Society of Chemical Industry  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号