首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nitriles, which are mostly needed and produced by the chemical industry, play a major role in various industry segments, ranging from high‐volume, low‐price sectors, such as polymers, to low‐volume, high‐price sectors, such as chiral pharma drugs. A common industrial technology for nitrile production is ammoxidation as a gas‐phase reaction at high temperature. Further popular approaches are substitution or addition reactions with hydrogen cyanide or derivatives thereof. A major drawback, however, is the very high toxicity of cyanide. Recently, as a synthetic alternative, a novel enzymatic approach towards nitriles has been developed with aldoxime dehydratases, which are capable of converting an aldoxime in one step through dehydration into nitriles. Because the aldoxime substrates are easily accessible, this route is of high interest for synthetic purposes. However, whenever a novel method is developed for organic synthesis, it raises the question of substrate scope as one of the key criteria for application as a “synthetic platform technology”. Thus, the scope of this review is to give an overview of the current state of the substrate scope of this enzymatic method for synthesizing nitriles with aldoxime dehydratases. As a recently emerging enzyme class, a range of substrates has already been studied so far, comprising nonchiral and chiral aldoximes. This enzyme class of aldoxime dehydratases shows a broad substrate tolerance and accepts aliphatic and aromatic aldoximes, as well as arylaliphatic aldoximes. Furthermore, aldoximes with a stereogenic center are also recognized and high enantioselectivities are found for 2‐arylpropylaldoximes, in particular. It is further noteworthy that the enantiopreference depends on the E and Z isomers. Thus, opposite enantiomers are accessible from the same racemic aldehyde and the same enzyme.  相似文献   

2.
Recently, the capability of the aldoxime dehydratase from Bacillus sp. (OxdB) for the transformation of fatty aldoximes into fatty nitriles with impressive substrate loadings is reported. However, the substrate scope of this biocatalyst turned out to be limited in terms of the chain length with decanal oxime being the substrate with the longest well tolerated n-alkyl chain. Besides the increased bulkiness of the long-chain aldoximes, their strongly decreased water solubility represents a further hurdle for an efficient biotransformation. Addressing this challenge of an expanded substrate spectrum comprising long-chain fatty aldoximes, this work investigates the substrate solubility and enzyme kinetics in combination with molecular modeling in order to find an enzyme mutant being suitable for C12- to C16-aldoximes. Both, fatty aldoxime solubility in water and the active site of the wild-type enzyme OxdB are identified as critical issues for an efficient biotransformation of these substrates. The activity issue is addressed by a rational design of a mutant using a homology modeling as well as a molecular modeling software suitable for enzymes. With the resulting double mutant OxdB-F289A/L293A, this report can achieve successful biotransformations with the C12- to C16-aldoximes at substrate concentrations of 250 × 10−3 to 1000 × 10−3 m . For example, an excellent conversion of >99% is obtained with tetradecanal oxime. Practical applications: Fatty nitriles with a prolonged chain length of C12 or more are of high interest in industry due to their use for the production of fatty amines on large technical scale. As an alternative route, fatty nitriles can be generated from their aldoximes by means of an aldoxime dehydratase (Oxd) as biocatalyst. The conversion of long-chain fatty aldoximes, however, remained a challenge up to now. This work describes the optimization of the aldoxime dehydratase OxdB from Bacillus sp. for the dehydration of nonsoluble bulky fatty aldoximes. The created variant can convert long chain fatty aldoximes toward the corresponding nitrile as demonstrated for C12- to C16-nitriles. In addition, high conversion (of up to >99%) is achieved when operating at high substrate concentrations of up to 1000 × 10−3 m , thus making this approach interesting for industrial applications.  相似文献   

3.
The seed oil of Arum maculatum has been found to contain 13‐phenyltridec‐9‐enoic (0.4%) and 15‐phenyl‐pentadec‐9‐enoic (1%) acids, detected by gas chromatographymass spectrometry of the picolinyl ester and related derivatives.  相似文献   

4.
The asymmetric Sharpless epoxidation of methyl 13S‐hydroxy‐9Z, 11E‐octadeca‐dienoate (13S‐HODE, 1 ) with tert‐butyl hydroperoxide (TBHP) catalysed by titanium tetraisopropoxide {Ti(iOPr)4} in the presence of L(+)‐diisopropyl tartrate (L‐DIPT) gave methyl 13S‐hydroxy‐11S, 12S‐epoxy‐9Z‐octadecenoate 2 (erythro isomer) in 84% diastereomeric excess (de). The epoxidation of 1 with TBHP catalysed by Ti(iOPr)4 in the presence of D(‐)‐DIPT yielded methyl 13S‐hydroxy‐11RR12R‐epoxy‐9Z‐octadecenoate (threo isomer) 3 in 76% de.  相似文献   

5.
Although there is extensive information describing the positive biological effects of conjugated linoleic acid and its main isomer rumenic acid (RA; C18:2 cis 9, trans 11), and alpha‐linolenic acid (ALA) and vaccenic acid (TVA), data about their bioavailability are not available. In this work, we investigated the oral absorption and disposition of these fatty acids in Wistar rats. A naturally enriched goat dairy fat (EDF) was obtained by supplementing ruminant diets with oils or oilseeds rich in polyunsaturated fatty acids (PUFA). The EDF was administered orally (single dose of 3000 mg EDF/kg body weight equivalent to 153 mg TVA/kg body weight, 46 mg RA/kg body weight and 31 mg ALA/kg body weight), and serial blood and liver samples were collected and TVA, RA and ALA concentrations determined by GC/MS. The fatty acids TVA, RA and ALA were rapidly absorbed (t1/2a, 0.36, 0.66 and 0.76 h, respectively, for plasma) and slowly eliminated (t1/2β, 17.04, 18.40 and 16.52 h, respectively, for plasma). The maximum concentration (Cmax) was detected in liver > plasma > erythrocyte. Our study shows that when orally administered EDF, its components TVA, RA and ALA were rapidly absorbed and distributed throughout the body by the blood circulation to exert systemic effects.  相似文献   

6.
The cerebroside 1a and the ceramide 1b , both playing important roles in epidermal barrier function, were synthesized by N‐acylation of 1‐O‐glucosylated C18‐sphingosine 2 and C18‐sphingosine 8 , respectively, with O‐acyl fatty acid 3 . The required compound 3 was obtained from ω‐hydroxy fatty acid 6 and linoleic acid 7 by esterification. The ω‐hydroxy C30‐fatty acid 6 was prepared as follows: Copper‐catalyzed coupling of ω‐hydroxy alkyl halide 11 with the Grignard reagent derived from bromo compound 13 afforded after oxidation C17‐aldehyde 15 . Wittig reaction with phosphonium salt 10 , derived from ω‐bromo‐tridecanoic acid 9 , and subsequent hydrogenation and O‐deprotection furnished 6 in high yield.  相似文献   

7.
The objective of this work is the prediction of induction time (ti) for simple gas hydrate formation in the presence or absence of kinetic hydrate inhibitors at various conditions based on the Kashchiev and Firoozabadi model in a flow mini‐loop apparatus. For this purpose, the ti model is developed for simple gas hydrate formation in batch system for natural gas components during hydrate formation in a flow mini‐loop apparatus. A laboratory flow mini‐loop apparatus is designed and built up to measure the ti for simple gas hydrate formation when a hydrate former (such as C1, C3, CO2 and i‐C4) is contacted with water in the absence or presence of dissolved inhibitor, such as poly vinylpyrrolidone, PVCap and L ‐tyrosine. In each experiment, a water blend saturated with pure gas is circulated up to a required pressure. Pressure is maintained at a constant value during experimental runs by means of the required gas make‐up. The average absolute deviation (AAD) of the predicted ti values from the corresponding experimental data are found to be about 11% and 9.4% for gas hydrate formation ti in the presence or absence of kinetic hydrate inhibitors, respectively. © 2012 Canadian Society for Chemical Engineering  相似文献   

8.
BACKGROUND: 2‐ethylhexylphosphonic acid mono‐(2‐ethylhexyl) ester (HEHEHP, H2A2) has been applied extensively to the extraction of rare earths. However, there are some limitations to its further utilization and the synergistic extraction of rare earths with mixtures of HEHEHP and another extractant has attracted much attention. Organic carboxylic acids are also a type of extractant employed for the extraction of rare earths, e.g. naphthenic acid has been widely used to separate yttrium from rare earths. Compared with naphthenic acid, sec‐nonylphenoxy acetic acid (CA100, H2B2) has many advantages such as stable composition, low solubility, and strong acidity in the aqueous phase. In the present study, the extraction of rare earths with mixtures of HEHEHP and CA100 has been investigated. The separation of the rare earth elements is also studied. RESULTS: The synergistic enhancement coefficient decreases with increasing atomic number of the lanthanoid. A significant synergistic effect is found for the extraction of La3+ as the complex LaH2ClA2B2 with mixtures of HEHEHP and CA100. The equilibrium constant and thermodynamic functions obtained from the experimental results are 10?0.92 (KAB), 13.23 kJ mol?1H), 5.25 kJ mol?1G), and 26.75 J mol?1 K?1S), respectively. CONCLUSION: Graphical and numerical methods have been successfully employed to determine the stoichiometries for the extraction of La3+ with mixtures of HEHEHP and CA100. The mixtures have different extraction effects on different rare earths, which provides the possibility for the separation of yttrium from heavy rare earths at an appropriate ratio of HEHEHP and CA100. Copyright © 2009 Society of Chemical Industry  相似文献   

9.
Me2Si(C5Me4)(NtBu)TiCl2, (nBuCp)2ZrCl2, and Me2Si(C5Me4)(NtBu)TiCl2/(nBuCp)2ZrCl2 catalyst systems were successfully immobilized on silica and applied to ethylene/hexene copolymerization. In the presence of 20 mL of hexene and 25 mg of butyloctyl magnesium in 400 mL of isobutane at 40 bar of ethylene, Me2Si(C5Me4)(NtBu)TiCl2 immobilized catalyst afforded poly(ethylene‐co‐hexene) with high molecular weight ([η] = 12.41) and high comonomer content (%C6 = 2.8%), while (nBuCp)2ZrCl2‐immobilized catalyst afforded polymers with relatively low molecular weight ([η] = 2.58) with low comonomer content (%C6 = 0.9%). Immobilized Me2Si(C5Me4)(NtBu)TiCl2/(nBuCp)2ZrCl2 hybrid catalyst exhibited high and stable polymerization activity with time, affording polymers with pseudo‐bimodal molecular weight distribution and clear inverse comonomer distribution (low comonomer content for low molecular weight polymer fraction and vice versa). The polymerization characteristics and rate profiles suggest that individual catalysts in the hybrid catalyst system are independent of each other. POLYM. ENG. SCI., 47:131–139, 2007. © 2007 Society of Plastics Engineers  相似文献   

10.
4‐Chloro‐N‐8‐quinolinylbenzenesulfonamide (HL) was synthesised and characterised by elemental analysis, IR and FT‐Raman spectroscopy. The synthesised reagent dissolved in toluene was used for copper(II) extraction from 1.0 mol dm?3 KNO3. The experimental extraction data have been treated graphically and numerically and the complexes CuL2 and Cu(NO3)L have been proposed as being responsible for the metal extraction. Values of the corresponding stoichiometric extraction constants have been determined. Copyright © 2004 Society of Chemical Industry  相似文献   

11.
Construction of gemini‐like surfactants using the cationic single‐chain surfactant cetyltrimethylammonium bromide C16H33N(CH3)3Br2 (CTAB) and the anionic dicarboxylic acid sodium salt NaOOC(CH2)n‐2COONa (CnNa2, n = 4, 6, 8, 10, 12) by way of non‐covalent interactions has been investigated by surface tension measurements, hydrogen‐1 nuclear magnetic resonance (1H NMR) spectroscopy and isothermal titration microcalorimetry (ITC). The critical micelle concentrations (cmc) of the CTAB/CnNa2 mixtures are obviously lower than that of CTAB and strongly depend on the mixing ratio. Moreover, the cmc values of the CTAB/CnNa2 mixtures decrease gradually with an increasing methylene chain length of CnNa2, indicating hydrophobic interaction between the hydrocarbon chains of CTAB and CnNa2 facilitates micellization of the mixtures. In particular, the ITC curves and 1H NMR spectra indicate that the binding ratio of CTAB to CnNa2, except C4Na2, is around 2:1, i.e., (CTAB)2CnNa2. Additionally, CTAB/CnNa2 mixtures are soluble in a whole molar ratio and concentration ranges have been studied, even at the electrical neutralization point. Therefore, these results reveal that highly soluble gemini‐like surfactants are conveniently constructed with oppositely‐charged cationic single‐chain surfactants and dicarboxylic acid sodiums. In an attempt at improving the performance of surfactants this work provides guidance for choosing additives that form gemini‐like surfactants via an uncomplicated synthesis.  相似文献   

12.
Triterpenes of betulinic acid type exhibit many interesting biological activities. Therefore a series of new 3α‐hydroxy‐lup‐20(29)‐ene‐23,28‐dioic acid derivatives 2a—22 with putative pharmacological activities were synthesized. As starting compounds 3α‐hydroxy‐lup‐20(29)‐ene‐23,28‐dioic acid ( 1a ), isolated from Schefflera octophylla, or its 3‐O‐acetyl derivative 1b were used. Mono‐ and diesters ( 2a—b from 1a , and 4d from 4c ) were prepared with CH2N2. Oxidation of the isopropenyl side chain with OsO4 yielded the 20,29‐diols ( 4a—b from 1b , and 19 from 17 ), which were in the case of 4b further transformed to the 29‐norketones 8a/mdash;b . Oxidation of the isopropenyl side chain with m‐chloroperbenzoic acid afforded the 20,29‐epoxide 12 (from 1b ) and the 29‐aldehydes and a‐hydroxy aldehydes ( 13a—c from 2a, 14a—c from 2b , and 16a—c from 15a ). Ring A was modified by a tosylation—elimination sequence using p‐TsCl/NaOAc, which afforded diolefin 15a (from 2a ) with Δ2,20(29) double bonds or 23‐nor‐Δ3,20(29)diolefin 17 (from 1a ). Compounds 4b, 4c , and 8a were coupled with L ‐methionin, L ‐phenylalanin, L ‐alanin, L ‐serin, and L ‐glutaminic acid via amide bonds at positions 23 and 28 to afford the amino acid conjugates 5a—7b and 9a—11 .  相似文献   

13.
14.
Many natural phenolic compounds found in plants are well known for their antibiotic and antioxidant activities. It has been hypothesized that these activities of natural phenols could be used for developing permanent anti-biofouling coatings. In this study, two phenolic components, anacardic acid and cardanol, were extracted from cashew nut shell liquid, and tested for their antibiotic and anti-biofouling activities against Pseudomonas fluorescens. Both compounds killed all the cells within 18 hours (anacardic acid) and 30 hours (cardanol) after the addition to the culture media at a concentration of 800 μg/ml. To form a stable permanent coating of these compounds, first they were polymerized by enzymatic polymerization, and the polymers were cross-linked on a glass slide. P. fluorescens were cultured on the coated and uncoated glasses for two weeks, and the images of the cells grown on the surfaces were taken by SEM. The coated surfaces clearly demonstrated anti-biofouling activities, showing not only fewer numbers of cells but also less exopolymer than the uncoated surfaces. Based on these results, a phenolic compound with a similar structure of anacardic acid was synthesized by using propylene diamine and fluorocarboxylic acid with cardanol. The synthesized phenolic compound was polymerized and cross-linked on a glass slide to test the anti-biofouling activity. The SEM images of the cells on the coated surface showed considerable decreases in the number of adhered cells and the amount of exopolymers even more than the anacardic acid and cardanol coatings. It is thought that the natural phenolic compounds with active functional groups can be used for anti-biofouling agents. This paper is dedicated to Prof. Chang Kyun Choi for celebrating his retirement from the School of chemical and biological engineering of Seoul National University.  相似文献   

15.
Progress in the structure control of polymethacrylates and polyacrylates through stereospecific living polymerization are described. Three types of stereospecific living polymerizations have been developed for methacrylate polymerization: isotactic with t‐C4H9MgBr, syndiotactic with ­t‐C4H9Li/R3Al, and heterotactic with t‐C4H9Li/bis(2,6‐di‐t‐butylphenoxy)methylaluminium [MeAl(ODBP)2]. The last initiator system has been proved effective for monomer‐selective living copolymerization of methacrylates. The living nature of these polymerizations allows extensive use for the syntheses of stereoregular block polymers and copolymers, and end‐functionalized polymers such as macromonomers. Through stereospecific polymerizations and copolymerizations of macromonomers, comb polymers and graft copolymers with defined stereoregularities in the main chain and side chains could be obtained. Some properties of these stereoregular polymers are also described, including stereocomplex formation and solution viscosity. Stereospecific polymerizations of crotonates leading to diisotactic, diheterotactic and disyndiotactic polymers are also discussed. Supercritical fluid chromatography (SFC) has been proven to be useful for isolating uniform polymers from stereoregular poly(methyl methacrylate)s (PMMAs) with narrow molecular weight distribution. Uniform end‐functionalized polymers have been used to construct more elaborate uniform polymer architectures such as stereoblock, star, and comb polymers, and copolymers. The uniform polymers have been proven quite useful for the studies of the relationship between structures and properties such as glass transition temperature, melting temperature and solution viscosity. Particularly interesting is the use of isotactic and syndiotactic uniform PMMAs for the understanding of stereocomplex formation in certain solvents such as acetone. Furthermore, a uniform stereoblock PMMA was found to undergo intramolecular complexation in addition to intermolecular complexation in acetone. Uniform star and comb PMMAs were also prepared and found useful for discussing the effect of branching on the solution viscosity. © 2000 Society of Chemical Industry  相似文献   

16.
Carboxylic acid reductases (CARs) catalyze the reduction of a broad range of carboxylic acids into aldehydes, which can serve as common biosynthetic precursors to many industrial chemicals. This work presents the systematic biochemical characterization of five carboxylic acid reductases from different microorganisms, including two known and three new ones, by using a panel of short‐chain dicarboxylic acids and hydroxy acids, which are common cellular metabolites. All enzymes displayed broad substrate specificities. Higher catalytic efficiencies were observed when the carbon chain length, either of the dicarboxylates or of the terminal hydroxy acids, was increased from C2 to C6. In addition, when substrates of the same carbon chain length are compared, carboxylic acid reductases favor hydroxy acids over dicarboxylates as their substrates. Whole‐cell bioconversions of eleven carboxylic acid substrates into the corresponding alcohols were investigated by coupling the CAR activity with that of an aldehyde reductase in Escherichia coli hosts. Alcohol products were obtained in yields ranging from 0.5 % to 71 %. The de novo stereospecific biosynthesis of propane‐1,2‐diol enantiomer was successfully demonstrated with use of CARs as the key pathway enzymes. E. coli strains accumulated 7.0 mm (R)‐1,2‐PDO (1.0 % yield) or 9.6 mm (S)‐1,2‐PDO (1.4 % yield) from glucose. This study consolidates carboxylic acid reductases as promising enzymes for sustainable synthesis of industrial chemicals.  相似文献   

17.
Lewis hard acid AlCl3 was softened by some butyl halides forming highly polarized liquids. These liquids are similar to the ionic liquids (ILs) with metallic complex anion and varying composition, and thus termed here as carbonium pseudo ILs (CPILs). The CPILs, that is, t‐C4H9Cl‐AlCl3, n‐C4H9Cl‐AlCl3, and t‐C4H9Br‐AlCl3, show very strong desulfurization activity for various thiophenic compounds like 3‐methylthiophene, benzothiophene, and dibenzothiophene. The above thiophenic compounds can be removed completely from model oils within 20 min by a very small amount of CPILs reactive extractant. The extractive mechanism is deemed as an acid–base complexation along with alkylation of the thiophenic compounds, and the Lewis acidity comes from both carbonium ion (borderline acid) and the dissolved AlCl3 (hard acid). The t‐C4H9Cl‐AlCl3 shows good selectivity for three thiophenic compounds even in toluene‐containing system. Further, some CPILs show satisfactory desulfurization performance for the model gasoline that mimics the composition of real one. © 2012 American Institute of Chemical Engineers AIChE J, 59: 948–958, 2013  相似文献   

18.
In the present work, a new and simple Schiff base‐assisted extraction strategy for Ni and Zn from an edible oil matrix with subsequent determination using a flame atomic absorption spectrometer was suggested. According to the green approach, laborious sample‐pretreatment procedures were eliminated via complexation of the analytes with N,N′‐bis(4‐methoxysalycylidene)‐2‐hydroxy‐1,3‐propanediamine (4MSHP) and transferred from the oil phase to the aqueous phase. The complexation properties of 4MSHP, Ni, and Zn were investigated using UV–vis spectrophotometry. The experimental conditions that affect the extraction efficiency were optimized using central composite design. The optimum conditions for the extraction of Ni and Zn were as follows: a volume to oil mass ratio of 0.83 to 1.31 mL g?1 of 4MSHP solution; 62.3‐ and 50.6‐min, stirring time; 27.3 and 31.1 °C, temperature, respectively. The detection limits (3sbm?1) were 0.41 μg g?1 for Ni and 0.16 μg g?1 for Zn. Validation of the suggested work was performed by the analysis of organometallic standard‐doped n‐hexane solutions as certified reference materials under the optimum experimental conditions. The recovery percentages were warranted the accuracy and found as 98.2 ± 1.8% for Ni and 99.8 ± 1.2% for Zn. In addition, relative SD values were below 5% for both the analytes. The Student's t‐test showed that there was no significant difference between the found and doped amount of analytes at 95% confidence level. The features such as the detection technique, cheapness, eco‐friendly solvent usage, and practicality were better compared to the literature.  相似文献   

19.
The kinetics of crystallization induced by orotic acid (OA) and boron nitride (BN) as nucleating agents were investigated for bacterial poly(3‐hydroxybutyrate‐co‐3‐hydroxyhexanoate)s (P(HB‐co‐HH)s) containing from 0 to 18% HH monomer units. The nucleation efficiency of these two chemicals was investigated by differential scanning calorimetry (DSC) and polarized optical microscopy (POM). It was found that both orotic acid and boron nitride are able to nucleate the crystallization of PHB. In the case of P(HB‐co‐HH) copolymers, orotic acid showed an outstanding nucleating effect. The comparison of half‐crystallization times shows that for P(HB‐co‐10% HH), the crystallization initiated by orotic acid is more than three time faster than the one induced by boron nitride (t1/2BN/t1/2OA(60°C) = 3.7 and t1/2BN/t1/2OA(90°C) = 4.5). According to the fact that orotic acid is a biodegradable, biocompatible and a nontoxic chemical, this nucleating agent is a promising solution for PHAs used in medical applications such as implants. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

20.
The photocatalytic degradation of 3‐nitrobenzenesulfonic acid in the presence of solar radiation and artificial UV radiation with suspended TiO2 was studied in a batch and continuous annular reactor, respectively. The effects of catalyst loading, pH, presence of anions and cations and initial concentration on the rate of photocatalytic degradation were investigated. Concentration–time data were correlated with the rate equation d[Ct=0]/dt = krK[Ct=0]/(1 + K[Ct=0]). Studies were carried out to compare the photolytic, photochemical and photocatalytic methods of degradation. Copyright © 2005 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号