首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Lactose degradation in the presence of C18 long chain fatty acids was examined under anaerobic conditions at 37 °C. The lactose degradation rate was a function of linoleic acid (LA) and oleic acid (OA) concentrations but independent of the amount of stearic acid (SA) added. In cultures fed with LA, lactose was removed within approximately 12 h and within 6 h for cultures inoculated with OA or SA. Glucose, a product of lactose degradation, was only observed in cultures fed with 500–700 mg dm?3 LA and 1000 mg dm?3 OA. No galactose was detected under any of the conditions examined. The cause of glucose accumulation is likely due to inhibition of acidogens by LA and OA. Lactate was detected under all conditions examined. LA was more inhibitory on lactate‐consuming organisms than OA and SA and larger amounts of lactate were observed in cultures fed with LA. In addition to lactate, butyrate, propionate and acetate were also observed. Accumulation of volatile fatty acids was a function of the type and concentration of long chain fatty acids. In cultures fed with SA, lower levels of butyrate and acetate were observed when compared with those inoculated with LA and OA and no propionate was detected. Copyright © 2004 Society of Chemical Industry  相似文献   

2.
Long Chain Fatty Acid (LCFA) mixtures containing linoleic, oleic and stearic acids plus carbohydrates are found in a variety of effluents arising from fried food manufacture and milk processing. Accumulation of Volatile Fatty acids (VFAs) due to the presence of LCFAs may impair the operation of an anaerobic system treating effluents containing a mixture of triglycerides and carbohydrates. In this study, the effects of linoleic (C18:2), oleic (C18:1), and stearic (C18:0) acids on glucose fermentation were investigated at 21 °C using a culture acclimated to glucose. In cultures receiving ≥300 mg dm?3 LCFAs, residual amounts of glucose remained after approximately 8 h and none was detected after 24 h. Acetate degradation was inhibited in the presence of 300 or more mg dm?3 linoleic acid (LA), oleic acid (OA), or stearic acid (SA) with more acetate accumulation observed in cultures receiving LA. In comparison to the controls, similar amounts of propionate accumulation were observed in cultures receiving ≤100 mg dm?3 of each LCFA. However, in cultures receiving ≥300 mg dm?3 LCFAs, more propionate accumulated with complete removal observed within 20 days for only those cultures receiving oleic or stearic acids. Butyrate accumulation was observed only in cultures receiving ≥300 mg dm?3 LA and none was detected after 10 days of incubation. Copyright © 2004 Society of Chemical Industry  相似文献   

3.
A multi‐stage temperature‐programmed fractionating crystallization process was carried out to examine the effects of the presence of stearic acid (SA), oleic acid (OA), and linoleic acid (LA) on the separation of elaidic acid (EA). The results showed that the efficiency of fractionating crystallization of EA depended largely on the crystallization temperature, initial concentration of EA and presence of SA. The content of SA plays very important role for the fractionating performance. It was a characteristic observation that only when SA <2%, substantial crystallization of EA (>50% in stepwise crystal fractions) were obtained regardless of the initial concentration of SA. In general, SA induced crystallization of EA in earlier stage but delayed further crystallization of EA in later stage; the crystallization of EA was independent from co‐existing OA and LA. After reduction of EA content in solution to certain extent (7–10%, at ?20°C), further reduction of EA content requires much lower crystallization temperatures (trans‐fatty acids (TFA) from partially hydrogenated soybean oil (PHSO) is of high commercial interest. One of the strategies is to selectively release TFAs as free fatty acids from PHSO enzymatically. However, all commercially available enzymes are far away from qualified to selectively release TFAs, where there are always substantial non‐trans FAs hydrolyzed simultaneously. Therefore, developing post‐processing technology is requisite in order to recover those non‐trans fatty acids. Thus, this model system was designed based on FA composition characteristic of PHSO, which aimed to acquire some basic data and experience that lack in available literatures, so as to serve designing efficient practical process for removing trans‐fatty acid moieties from PHSO. The results from this work may be of general value to achieve a better understanding of fractionating crystallization behaviors of different FAs, relationship with individual molecular feature and property, and their interference effects, which might contribute to the design of practically feasible protocol to remove TFAs from PHSO and recover non‐trans FAs at the same time.  相似文献   

4.
During the wet oxidation of contaminated wastewaters, the destruction of low molecular weight carboxylic acid intermediates such as acetic, glyoxalic, and oxalic acids is often the rate-controlling step. Oxidation of acetic acid, a very recalcitrant intermediate, requires compelling treatment severity. Heterogeneous catalytic wet oxidation of model acetic acid aqueous solutions was conducted under mild conditions (below the normal boiling point of water) using hydrogen peroxide over various transition metal-exchanged NaY zeolites. Treatment of Cu2+–NaY with oxalic acid [OA] led to a catalyst, Cu2+–NaY [OA], with significantly improved properties in terms of total organic carbon (TOC) removal efficiency and catalyst stability against leaching. This catalyst outperformed homogeneous Cu2+ by a factor of 2–2·5 times. Continuous feeding of H2O2 reduced its undesirable decomposition. Improvement of the TOC-degradation performance by Cu2+–NaY [OA] was tentatively attributed to the removal of sodium and possibly aluminium in the zeolite. © 1998 Society of Chemical Industry  相似文献   

5.
We analyzed the unsaturated fatty acids oleic (OA, 18:1n‐9) and linoleic (LA, 18:2n‐3), and a 3:1 LA:OA mixture from ?100 to 50 °C with continuous gradient temperature Raman spectroscopy (GTRS). The 20 Mb three‐dimensional data arrays with 0.2 °C increments and first/second derivatives allowed rapid, complete assignment of solid, liquid, and transition state vibrational modes. For OA, large spectral and line width changes occurred in the solid state γ to α transition near ?4 °C, and the melt (13 °C) over a range of only 1 °C. For LA, major intensity reductions from 200 to 1750 cm?1 and some peak shifts marked one solid state phase transition at ?50 °C. A second solid state transition (?33 °C) had minor spectral changes. Large spectral and line width changes occurred at the melt transition (?7 °C) over a narrow temperature range. For both molecules, melting initiates at the diene structure, then progresses towards the ends. In the 3:1 LA:OA mixture, some less intense and lower frequencies present in the individual lipids are weaker or absent. For example, modes assignable to C8 rocking, C9H–C10H wagging, C10H–C11H wagging, and CH3 rocking are present in OA but absent in LA:OA. Our data quantify the concept of lipid premelting and identify the flexible structures within OA and LA, which have characteristic vibrational modes beginning at cryogenic temperatures.  相似文献   

6.
Poly(L ‐lactic acid‐co‐succinic acid‐co‐1,4‐butanediol) (PLASB) was synthesized by a direct condensation copolymerization of L ‐lactic acid, succinic acid (SA), and 1,4‐butanediol (BD) in bulk state using titanium(IV) butoxide (TNBT) as a catalyst. Weight average molecular weight (Mw) of PLASB increased from 3.5 × 104 to 2.1 × 105 as the content of SA and BD went up from 0.01 to 0.5 mol/100 mol of L ‐lactic acid (LA). PLASB having Mw in the range from 1.8 × 105 to 2.1 × 105 showed tensile properties comparable to those of commercially available poly(L ‐lactic acid) (PLLA). In sharp contrast, homopolymerization of LA in bulk state produced PLLA with Mw as low as 4.1 × 104, and it was too brittle to prepare specimens for the tensile tests. Mw of PLASB synthesized by using titanium(IV)‐2‐ethyl(hexoxide), indium acetate, indium hydroxide, antimony acetate, antimony trioxide, dibutyl tin oxide, and stannous‐2‐ethyl 1‐hexanoate was compared with that of PLASB obtained by TNBT. Ethylene glycol oligomers with different chain length were added to LA/SA in place of BD to investigate effect of chain length of ethylene glycol oligomers on the Mw of the resulting copolymers. Biodegradability of PLASB was analyzed by using the modified Sturm test. Toxicity of PLASB was evaluated by counting viable cell number of mouse fibroblast cells that had been in contact with PLASB discs. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 466–472, 2006  相似文献   

7.
A new immobilized biocatalyst based on Rhizopus oryzae fungal cells entrapped in poly(vinyl alcohol)‐cryogel was evaluated in both the batch and semi‐batch processes of L (+)‐lactic acid (LA) production, when glucose, acid hydrolysates of starch or gelatinized potato starch were used as the main substrates. Under the batch conditions, the immobilized biocatalyst developed produced LA with yields of 94% and 78% from glucose and acid starch hydrolysates, respectively. Semi‐batch conditions enabled product yields of 52% and 45% to be obtained with the corresponding substrates. The highest process productivity (up to 173 g L?1) was reached under semi‐batch conditions. Potato starch (5–70 g L?1) was also transformed into lactic acid by immobilized R. oryzae. It was shown that long‐term operation of the immobilized biocatalyst (for at least 480 h) produced a low decrease in metabolic activity. Copyright © 2006 Society of Chemical Industry  相似文献   

8.
Many ecological interactions in communities take place between consumers and the organisms they feed on. Continuous surplus of specific nutritional compounds in the diet may lead to evolutionary changes in the metabolic capacity of the consumer, leaving the biosynthesis of such compounds prone to genetic decay and render organisms auxotrophic. A nutrient that is essential to many organisms is the unsaturated fatty acid, linoleic acid (LA; 18:2n-6), which is important in the maintenance of cell membrane fluidity and as a precursor for signaling molecules. LA is readily synthesized in bacteria, protozoa and plants, but it was long thought that all animals lack this ability. Although the majority of animals lack the ability for LA biosynthesis, an increasing number of studies have shown that LA is commonly synthesized in arthropods. Here, we investigated a basal hexapod group, Collembola, to shed light on early evolution of LA synthetic ability in arthropods and its relation to dietary composition. We use stable isotope labeling to detect biosynthesis of LA in Collembola fed with 13C–OA oleic acid (OA; 18:1n-9), a precursor of LA. Our data demonstrate that LA biosynthesis is common among Collembola with 10 out of 16 tested species being able to synthesize LA and 4 species lacking this ability. However, we did not find clear evidence for a relationship between LA synthetic ability and the natural diet of species. Thus, the selective pressures underlying LA biosynthesis might be species-specific and further research will shed new light on understanding this evolutionary process.  相似文献   

9.
In this study, the kinetics of the acid catalyzed hydrolysis of microcrystalline cellulose (Avicel PH101) to levulinic (LA) and formic (FA) acids was investigated in a batch reactor over the following range of conditions: 160–200°C, hydrochloric acid concentrations of 0.309–0.927 M (11.3–33.8 g/l), cellulose concentrations of 49.8–149 mM (8.06–24.1 g/l), and residence times of 0–50 min. The maximum LA yield of around 60% of theoretical was achieved for an initial cellulose concentration of 99.6 mM, acid concentration 0.927 M, and 180–200°C. A mathematical model and its analytical solution were developed to predict conversion of cellulose to LA and FA through glucose and hydroxymethyl‐2‐furfural based on an irreversible pseudo‐first order reaction. Rate analysis of each reaction indicated that the rate‐controlling step shifted from LA formation initially to HMF formation later. © 2011 American Institute of Chemical Engineers AIChE J, 2012  相似文献   

10.
以丙交酯为原料、辛酸亚锡为催化剂、丁二酸酐为改性剂,采用梯度升温法,在150℃、0.098MPa条件下采用直接熔融缩聚法合成端羧基聚乳酸共聚物P(LA/SA),接着用2,2-(1,3-亚苯基)-二 唑啉(1,3-PBO)对其进行扩链,按n(丙交酯)/n(1,3-PBO)= 1/2.4加入1,3-PBO,反应1h制得聚酰胺酯(PEA),最后将高岭土与PEA在150℃、减压条件下熔融复合改性。采用GPC、FTIR、1H NMR、DSC、SEM等手段对聚合物的结构进行表征和性能测试,结果表明,与P(LA/SA) 相比,扩链产物PEA相对分子质量大幅度提高,重均相对分子质量高达24万,玻璃化转变温度Tg高于PLA和P(LA/SA),改性后复合材料的热稳定性能提高,结晶度降低。  相似文献   

11.
Peres CM  Procopio J  Costa M  Curi R 《Lipids》1999,34(11):1193-1197
Incorporation and oxidation of fatty acids (FA) were investigated in resident and thioglycolate-clicited (TG-elicited) rat macrophages (Mϕ). Both cell types presented a time-dependent incorporation of [14C]-labeled palmitic acid (PA), oleic acid (OA), linoleic acid (LA), and arachidonic acid (AA) up to 6h. The total amount of [14C]-FA incorporated by resident Mϕ after 6 h was: AA>PA=LA>OA. TG-elicited cells presented a 50% reduction in the incorporation of LA, PA, and AA, whereas that of OA remained unchanged as compared to resident Mϕ. The FA were oxidized by resident Mϕ as follows: LA>OA>PA>AA. TG elicitation promoted a reduction of 42% in LA oxidation and a marked increase in AA oxidation (280%). The increased oxidation of AA in TG-elicited cells may account for the lower production of prostaglandins in Mϕ under these conditions. The full significance of these findings for Mϕ function, however, remains to be examined.  相似文献   

12.
The effect of unsaturated fatty acids on the abundance of Δ6 desaturase (D6D) mRNA and the fatty acid composition of HepG2 cell membranes was examined. Supplementation of HepG2 cells with oleic acid (18:1n-9, OA), linoleic acid (18:2n-6, LA), α-linolenic acid (18:3n-3, ALA), arachidonic acid (20:4n-6, AA) or eicosapentaenoic acid (20:5n-3, EPA) reduced D6D mRNA abundance by 39 ± 6.6, 40 ± 2.2, 31 ± 5.2, 55 ± 4.8, and 52 ± 5.0%, respectively, compared with control cells. Despite the reduction in D6D mRNA abundance, the level of D6D conversion products (20:3n-9, EPA and AA) in OA, ALA and LA supplemented cells, respectively, was elevated above that in control cells. Our results suggest that although unsaturated fatty acids decrease the abundance of D6D mRNA by as much as 50%, the conversion of polyunsaturated fatty acids and accumulation of long chain polyunsaturated fatty acids (LCPUFA) in HepG2 cell phospholipids continues to occur.  相似文献   

13.
The laboratory scale anaerobic–anoxic–aerobic (A2O) process fed with synthetic brewage wastewater was designed to investigate the effects of changing feed C/P ratio on the performance of biological nutrient removal (BNR) processes. In the experiment, the influent chemical oxygen demand (COD) concentration was kept at approximately 300 mg L?1 while the total phosphorus concentration was varied to obtain the desired C/P ratio. Results showed that when the C/P ratio was lower than 32, phosphorus removal efficiency increased as C/P ratio increased linearly, while when the C/P ratio was higher than 32, the P removal efficiency was maintained at 90–98%, and effluent P concentration was lower than 0.5 mg L?1. However, regardless of the C/P ratio, excellent COD removal (90% or higher) and good total nitrogen removal (75–84%) were maintained throughout the experiments. It was also found that very good linear correlation was obtained between COD uptake per unit P released in the anaerobic zone and C/P ratio. In addition, the P content in the wasted activated sludge increased with the decrease in the C/P ratio. Based on the results, it was recommended that the wastewater C/P ratio and its effects be incorporated into BNR design and operational procedures, appropriate C/P ratios were used to achieve the effluent treatment goals. Copyright © 2005 Society of Chemical Industry  相似文献   

14.
In cement industry, a great energy consumption has been observed during grinding of clinker. To reduce this consumption, some waste products have been used as grinding aids.In this investigation, the effects of sunflower oil (SO), oleic acid (OA), stearic acid (SA), myristic acid (MA) and lauric acid (LA) on the fineness and strength of the cement have been examined. These aids were added into clinker in certain ratios based on the cement clinker weight and the grinding has been done for a definite time at the same condition.All of the fatty acids used increased the fineness as compared with the cement without the grinding additives. SO and OA decreased the strength significantly, LA decreased it to a lesser extent and SA increased it definitely according to the common cement. But MA did not alter the strength of the cement as much as SA. In addition, the covering of the balls influences the grinding of cement clinker unfavourably.  相似文献   

15.
Abstract

The immobilization and controlled release of salicylic acid (SA) in chitosan/poly(lactic acid) (Ch/LA) blends were studied in the present work. The Ch/PLA bland’s morphology was studied by SEM. FT-IR and DSC were used to investigate the interactions between the polymer matrix and the SA. The SA release kinetics was interpreted by the Weibull and Higuchi models. The SA release was the fastest in Ch/PLA systems with inhomogeneous and porous structure. It was slower in neat PLA matrix due to its dense structure and hydrophobic behavior, and in neat chitosan matrix, because of specific electrostatic chitosan/SA interactions and complex formation.  相似文献   

16.
Humic acid (HA) was carbonized at 300, 400 and 500 °C and then functionalized with 1 wt%–12 wt% Fe(III) respectively [CHA300/400/500-Fe(III)]. Adsorption of such Fe(III)-functionalized carbonized HA as adsorbents to aqueous tetracycline (TC: 25 mg·L−1) was studied. The adsorption equilibrium time for CHA400-Fe(III) to TC was 6 h faster and the adsorption removal efficiency (Re) was two times higher than that of HA/CHA. The adsorption Re of CHA400-Fe(III) loaded 10% iron [CHA400-(10%)Fe(III)] to TC could reach 99.8% at 8 h and still kept 80.6% after 8 cycles. The adsorption kinetics were well fitted to the pseudo-second-order equation and the adsorption isotherms could be well delineated via Langmuir equations(R2 > 0.99), indicating that the homogeneous chemical adsorption of TC occurred on the adsorbents. The main adsorption mechanisms of TC were complexation Fe(III) and hydrophobic distribution. Electropositive and electronegative repulsion between TC and CHA400-(10%)Fe(III) at lowly pH(2) and highly pH(8–10) respectively, leaded to the relatively low adsorption capacity and more notable influence of ion concentration. When the pH was between 4 and 8, TC mainly existed in neutral molecules (TCH2), so the influence of ion concentration was not obvious. The dynamic adsorption results showed that the CHA400-(10%)Fe(III) could continuously treat about 2.4 L TC(27 mg·L−1) wastewater with the effluent concentration as low as 0.068 mg·L−1. Our study suggested a broad application prospect of a new, effective, low-cost and environment-friendly adsorbent CHA400-(10%)Fe(III) for treatment of low-concentration TC polluted wastewater.  相似文献   

17.
To elucidate the events elicited by the skin tumor promotor 12-O-tetradecanoylphorbol-13-acetate (TPA), which are modulated by linoleic acid (LA) and arachidonic acid (AA), the activity of these fatty acids in cultured mouse epidermal cells was compared. Approximately 94% of either exogenous radiolabelled fatty acid was incorporated into the total phospholipid pool over 15 h. The relative distribution among the phospholipid classes differed, however, such that approximately 70% of phospholipid-associated [14C]-LA was found in phosphatidylcholine, compared to approximately 30% for [14C]AA. Phosphatidylethanolamine and phosphatidylinositol/phosphatidylserine contained 17 and 13% of the phospholipid [14C]LA, and 34 and 30% of [14C]AA, respectively. Prostaglandin (PG) E2 production was low but similar in unstimulated cultures prelabelled with either [14C]LA or [14C]AA. However, in cultures treated with TPA (1.6 μM), [14C]AA-prelabelling resulted in approximately three times the amount of [14C]PGE2 compared with cultures prelabelled with [14C]LA. Cultured cells were found to contain significant δ6 desaturase activity, which may enable conversion of LA to AA, and thus may account for the observed PGE2 production from [14C]LA treated cells. AA-Supplemented (1.6 μM) cultures supported approximately twice the induction of ornithine decarboxylase activity by TPA compared with cultures treated with 1.8 μM LA. Activation of partially purified protein kinase C was similar for either fatty acid tested over a 10–300 μM dose range. Overall, the results suggest that LA does not have the same biological activity as AA with regard to several TPA-associated events known to be important in skin tumor promotion. This reduced biological activity of LA may be partly responsible for the known inhibition of mouse skin tumor promotion by high dietary levels of LA [Leyton, J., Lee, M.L., Locniskar, M.F., Belury, M.A., Slaga, T.J., Bechtel, D., and Fischer, S.M. (1991)Cancer Res. 51, 907–915].  相似文献   

18.
The incorporation of vaccenic acid (VA, 0.5 and 1.2%), conjugated linoleic acid (CLA, mixture of primarily c9,t11‐ and t10,c12‐CLA, 1.2%), linoleic acid (LA, 1.2%) and oleic acid (OA, 1.2%) into different tissues of mice was examined. The effects on the fatty acid composition of triacylglycerols (TAG) and phospholipids (PL) in kidney, spleen, liver and adipose tissue were investigated. VA and CLA (c9,t11‐ and t10,c12‐CLA) were primarily found in TAG, especially in kidney and adipose tissue, respectively. Conversion of VA to c9,t11‐CLA was indicated by our results, as both fatty acids were incorporated into all the analyzed tissues when a diet containing VA but not c9,t11‐CLA was fed. Most of the observed effects on the fatty acid profiles were seen in the CLA group, whereas only minor effects were observed in the VA groups compared with the OA group. Thus, CLA increased n‐3 polyunsaturated fatty acids (PUFA) in PL from kidney and spleen and lowered the ratio of n‐6/n‐3 PUFA in these tissues. Furthermore, CLA increased C22 PUFA in the PL fraction of kidney, spleen and liver, but reduced the level of arachidonic acid in PL of liver and spleen and lowered the Δ9‐desaturation indexes in all analyzed tissue TAG.  相似文献   

19.
L ‐Lactic acid (LA) was copolymerized with succinic acid (SA) and 1,4‐butenediol (1,4‐BED) in bulk state with titanium(IV) butoxide as a catalyst to produce poly(LA‐co‐SA‐co‐1,4‐BED) (PLASBED). Poly(L ‐lactic acid) (PLLA) homopolymer obtained from a direct condensation polymerization of LA had weight average molecular weight (Mw) less than 4.1 × 104 and was too brittle to prepare specimens for the tensile test. Addition of SA and 1,4‐BED to LA produced PLASB with Mw as high as 1.4 × 105 and exhibited tensile properties comparable to a commercially available high‐molecular‐weight PLLA. Chain extension by intermolecular linking reaction through the unsaturated 1,4‐BED units in PLASBED with benzoyl peroxide further increased the molecular weight and made PLASBED more ductile and flexible to show elongation at break as high as 450%. Biodegradability of PLASBED measured by the modified Sturm test was nearly independent of the 1,4‐BED content. Gel formation during the chain extension did not exert any significant influence on the biodegradability either. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 95: 1116–1121, 2005  相似文献   

20.
BACKGROUND: Succinic acid (SA) is an intermediate in the production of commodity chemicals, but SA bioproduction has not yet been commercialized due to end product inhibition and high product separation costs. Two‐phase partitioning bioreactors (TPPBs) can increase volumetric productivity through in situ product removal, although SA uptake by polymers requires a pH below the pKA2 of SA (4.2). It was proposed to reversibly reduce the pH with CO2 sparging for absorption of SA, followed by nitrogen stripping to allow continued bioproduction after returning to metabolic pH levels. RESULTS: At 1 atm CO2 sparging lowered the pH of RO water to 3.8 but only to 4.75 in medium, requiring acid/base pH adjustment in subsequent experiments. Actinobacillus succinogenes was temporarily exposed to pH 4.2 for between 5 min and 4 h to observe the effect on subsequent growth; cells could grow after up to 4 h of low pH exposure, sufficient time for SA uptake. Because atmospheric CO2 could not adequately lower the pH of medium, a TPPB was operated with the pH being shifted using strong acid/base; SA was recovered in situ, however, the accumulation of salts hindered further cell growth. CONCLUSION: Several key elements of this novel processing strategy were successfully demonstrated, and work is continuing with high pressure CO2 to achieve the desired pH adjustment levels. Copyright © 2011 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号