首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
考虑残余应力的砂岩损伤理论模型   总被引:1,自引:0,他引:1       下载免费PDF全文
杨小彬  秦跃平  叶飞 《煤炭学报》2015,40(12):2807-2811
采用自行研制的重力恒载蠕变渗流实验系统开展了砂岩恒定围压下的循环加载试验,得到不同围压下砂岩的应力应变过程。考虑岩样加载过程中的非线性变形特性,假定了轴向应力是轴向应变和球形应力函数;利用热力学基本原理,分析岩样损伤演化过程中能量耗散及转化关系;将受载岩样应力分为有效弹性部分和损伤部分,弹性部分受载损伤演化,损伤部分最终演化为残余应力;基于损伤力学基本原理,理论推导建立了三轴压缩情况下考虑残余应力的砂岩损伤本构关系,并对理论模型进行实验验证。研究结果表明所建立的损伤本构模型能很好地反映岩石受载损伤全应力应变过程,也能反映出围压对岩石损伤能量耗散的影响规律,随着围压的增大,砂岩需要损伤演化消耗的机械能也越大。  相似文献   

2.
为了更准确地认识真三轴应力条件下加卸荷速率对岩石力学特性与能量特征的影响规律,利用自主研发的“多功能真三轴流固耦合试验系统”开展了砂岩真三轴加卸荷力学特性试验,实现了最小主应力方向上的单面卸荷,模拟实际围岩应力演化过程。试验结果表明:随着卸荷速率的增大,砂岩破坏时的最大主应力、最大主应变、最小主应变和体积应变均减小、中间主应变增大,扩容起始点提前,岩样破坏模式逐渐由剪切破坏转为张拉破裂,且张性裂纹多集中于卸荷面附近。加载速率的增大,砂岩破坏时的最大主应力、最大主应变、最小主应变和体积应变增大,扩容起始点滞后,岩样破坏模式逐渐由张剪破坏转向剪切破坏,产生非贯通性裂纹。引入应变偏应力柔量分析不同加卸荷速率下砂岩变形规律,最小主应变和体积应变的偏应力敏感性与卸荷速率呈正相关,最大主应变的偏应力敏感性与加载速率呈正相关。此外,岩石在峰值应力前能量演化有明显的阶段性,峰前吸收的能量大多以可释放弹性应变能的形式存储,耗散能在峰后超过弹性应变能。耗散能比例Ud/U随着最大主应变的增加呈现出先增后降再增的趋势,峰值应力时Ud/U随着卸荷速率的增大而减小,随着加载速率的增大而增大。达到峰值应力时,岩石吸收的总能量U、弹性应变能Ue、耗散能Ud和相应的应变能增量与时间间隔的比值u均随着卸荷速率的增大而减小,随着加荷速率的增大而增大。  相似文献   

3.
孟庆彬  韩立军  浦海  文圣勇  李昊  李浩 《煤炭学报》2015,40(10):2386-2398
岩石的变形破坏过程是能量积聚与耗散的过程,岩石变形破坏是能量驱动的结果。基于不同尺寸与应变速率下的岩石单轴压缩试验,计算了不同尺寸与应变速率下岩样吸收的总能量、弹性应变能及耗散能,研究了能量积聚与耗散的演化规律,分析了在岩样变形破坏不同阶段的能量分配规律,并从能量角度分析了岩样破裂失稳的原因。研究表明:在单轴压缩试验时,岩样变形各阶段的能量特征有所差异,岩样吸收的总能量U0与耗散能Ud曲线呈非线性增加趋势,弹性应变能Ue曲线呈先增加后减小的趋势。岩样的能量与其高径比呈负相关的关系,两者呈幂函数关系;而与应变速率呈正相关,两者呈对数关系。岩石高径比越小或应变速率越大,岩石强度越高,单位体积岩样所吸收的能量也越高,造成岩样的破碎程度越大。在压密与弹性阶段,基本上将吸收的能量全部转化为弹性应变能储存于岩样内,弹性应变能是能量分配的主体。在塑性阶段,虽然弹性应变能的数值增大,但其所占比率有所下降;而耗散能比率有所增加,耗散能逐渐成为能量分配的主体。在峰后破坏阶段,弹性应变能瞬间释放,岩样吸收的能量几乎全部转化为耗散能,被裂隙面滑移摩擦而耗散掉,在峰后破坏阶段耗散能是能量分配的主体。  相似文献   

4.
为了获得岩石加载过程力学特性与能量演化特征,开展了不同围压下砂岩力学特性试验。基于能量平衡理论,分析不同围压下砂岩加载过程能量转化规律,研究不同围压下砂岩特征应力、裂纹演化与能量耗散之间的关系。结果表明:砂岩三轴压缩加载过程中,试样的裂纹闭合应力、起裂应力、扩容应力及峰值应力均随围压增大呈线性增加;起裂应力和扩容应力可以较好的描述岩石稳定状态,起裂应力可以看作为岩石出现新生微破裂的初始应力,而岩石扩容应力可以认为是进入塑性屈服状态的标志。岩石加载过程中能量演化特征与应力-应变曲线和特征应力呈现较好的对应关系,压密阶段对应的原生裂纹压密过程能量转化率低;弹性变形及微裂纹稳定扩展阶段,外力做功转化的应变能大部分储存为弹性应变能,岩石内部损伤和塑性变形耗散的能量较小;扩容应力后的裂纹非稳定扩展阶段,岩石内部损伤和塑性变形耗散能量明显增大;峰值应力附近,积聚弹性应变能迅速转化为用于岩石破坏的耗散能。耗散比(Ud/U)随轴向应变的增加,呈现增大-减小-再增大的规律,耗散比趋势变化的转折点与裂纹闭合应力和扩容应力对应。耗散能随着轴向裂纹应变的累计逐渐增大,扩容应力前,耗散能随...  相似文献   

5.
岩石加荷破坏弹性能和耗散能演化特性   总被引:4,自引:0,他引:4       下载免费PDF全文
开展大理岩、灰岩和砂岩的常规三轴试验,研究岩石变形过程的能量非线性演化特征。结果表明:岩样屈服前外力功大部分转化为弹性应变能存储于岩样内部,耗散能增加的很少,屈服点后耗散能快速增加,弹性能增速变缓。岩石的极限存储能具有围压效应,随着围压增加,岩石破坏时的极限存储能逐渐增加。极限存储能还与岩石本身的性质有关,岩石的强度越高,脆性越强,极限存储能愈大。灰岩极限存储能最大,大理岩极限存储能次之,砂岩极限存储能最小。根据弹性能和耗散能的演化规律,构建了岩石变形破坏过程中弹性应变能的非线性演化模型,理论模型与3种岩石的试验结果吻合较好。  相似文献   

6.
通过真三轴流固耦合试验系统对砂岩进行真三轴加卸载试验,研究不同最小主应力方向卸载速率对砂岩试件的力学行为和能量演化特性的影响。试验结果表明:随着卸载速率增加,体积最大压缩量减小,达到最大压缩量所需的最大主应变也减小;卸载速率增加使岩样中间主应力系数增加,而静水压力和剪切应力值均减小;随着卸载速率增加,峰值处总能量下降,弹性能呈现出先增加后趋于平稳的趋势,耗散能呈下降趋势。试验开始到最大压缩点之前为阶段Ⅰ,最大压缩点之后到峰值处为阶段Ⅱ。随着卸载速率增加,在阶段Ⅰ中,耗散能转化速率增加程度较低,岩样变形以弹性为主;在阶段Ⅱ,耗散能转化速率增加程度较高,岩样变形以塑性为主。研究结果对控制岩石变形和破坏具有指导意义。  相似文献   

7.
为揭示荷载作用下岩石细观能量转化特征及查明其影响因素,基于离散元PFC2D软件建立砂岩数学计算模型,通过试错法匹配试验应力—应变曲线标定细观力学参数,对不同围压、加载速率和颗粒直径下砂岩受压试验进行离散元研究。分析砂岩变形破坏全过程细观能量演化及转化特征,探讨细观能量转化机制及细观能量转化影响因素。研究结果表明:细观线应变能和黏结应变能在峰值应力前随变形增大而增大,峰值应力后释放并逐渐平缓发展;摩擦耗散能随变形增大而增大,阻尼耗散能演化趋势与宏观贯通裂纹形成相关;以耗散能转化率为例,能量转化经历了4个阶段,与裂纹发展趋势一致,且其极小值对应岩石损伤应力;损伤应力后,围压、加载速率的增大降低耗散能转化及其增长速率,颗粒直径的增大仅降低耗散能转化率,不影响其增长速率。  相似文献   

8.
不同应力路径下岩石峰前卸荷破坏能量特征分析   总被引:4,自引:0,他引:4  
基于岩石能量交换原理和3种不同卸荷路径下试验,研究了卸荷条件下岩石轴向吸收应变能、环向扩容消耗应变能、弹性应变能以及耗散能的演化特征与演化速率。研究结果表明:3个方案中,岩石轴向吸收的应变能主要转化为环向扩容消耗应变能,扩容程度方案III方案I方案II,而转化为耗散能较少,只有在临近破坏时耗散能才明显增加。初始围压对轴向应变能、环向扩容消耗应变能及弹性应变能的影响程度明显大于卸载路径,且都随着初始围压的增大呈近似线性增加。同一初始围压下,岩样临近破坏时存储的弹性应变能大小方案II方案I方案III,岩石发生破坏时,方案II发生岩爆的可能性最大。卸载路径和初始围压对耗散能有显著的影响。3个方案中应变能的演化速率均随着初始围压的增大而增加,初始围压对应变能演化速率的影响与卸载路径有关。  相似文献   

9.
为研究强冲击倾向性煤在多级循环加载条件下的能量耗散特征及损伤演化过程,在实验室开展了陕西某矿煤样的多级循环加载试验,试验研究结果表明:在多级应力循环下煤样的耗散能先迅速降低,后缓慢增加,当循环上限应力达到63%破坏载荷时,耗散能开始急剧增加;而能量耗散率先迅速降低,后逐渐稳定;煤样加卸载阶段弹性模量均有增大趋势,加载阶段弹性模量先迅速增大,后缓慢增加,而卸载阶段弹性模量变化较为平稳。采用累积耗散能定义循环加载中试件的损伤变量,并建立煤样损伤演化方程,通过试验和数值计算测定各个参数。理论和试验研究表明,基于能量耗散分析建立的冲击倾向性煤损伤演化方程能够较好反映煤样的损伤演化过程。  相似文献   

10.
从能量的角度出发,通过单轴压缩试验和单轴分级加卸载试验分析了砂岩在破坏过程中能量积聚和耗散的特点,并定量分析了弹性能和耗散能之间的关系。研究结果表明:( 1 ) 不同试验条件下,砂岩试样都经历了压密阶段、弹性阶段、塑性阶段和破坏阶段4个阶段,随着加载速率的增加,弹性模量和峰值强度也呈现增加的趋势;( 2 ) 砂岩试样在各个阶段内都存在弹性能和耗散能,整体随加载速率的增加呈非线性增长的关系,弹性能和耗散能相互抑制的阈值为20 MPa,20 MPa之前,弹性能对耗散能抑制作用明显,20 MPa之后,耗散能对弹性能抑制作用显著;( 3 ) 单轴分级加卸载试验下,试样因疲劳损伤和裂纹界面摩擦产生的塑性变形对弹性能无影响,表现为加卸载曲线的逐渐右移,吻合单轴压缩试验对应弹性能的同时,证明了本研究方法的合理性。  相似文献   

11.
刘之喜  王伟  罗吉安  缪广红 《煤炭学报》2020,45(9):3131-3139
为了探究岩石单轴压缩试验过程中的能量演化规律,利用RMT-150b岩石力学测试系统采用相同的加载速率对白砂岩分别进行了单轴压缩试验、单轴分级加卸载试验。基于裂纹产生及扩展模型研究,假设疲劳损伤和裂纹间的界面摩擦对弹性能无影响,则可以认为单轴压缩中与单轴分级加卸载各卸载点荷载相等处,弹性能均相等。基于上述假设对单轴压缩过程中弹性能、耗散能、弹性能占总能量比例、耗散能占总能量比例、弹性能与耗散能比值等进行分析。通过利用红砂岩单轴循环加卸载中弹性能的演化规律验证了这一假设的正确性。研究结果表明:(1)通过对单轴压缩试验过程中能量演化规律分析发现塑性耗散能、弹性能、滞回效应耗散能存在于岩石单轴压缩的各个阶段。(2)部分滞回效应能可以储存在岩石内部并且随着荷载增大呈线性增长。(3)弹性能与塑性能的增长速率都随着荷载增大而增大,通过对弹性能与耗散能比值分析,得出了不同荷载范围内岩石的弹性能与耗散能增长速率的比较,并且在岩石强度的80%左右处弹性能与耗散能比值达到最大,与弹性能量指数相等,说明该分析方法对岩石能量演化趋势的分析具有一定的合理性。(4)通过红砂岩单轴循环加卸载试验分析发现,疲劳损伤和裂...  相似文献   

12.
为了研究岩石在循环加卸载下的力学特性及能量损伤演化规律,设计了5种花岗岩三轴循环加卸载试验。基于试验结果,详细分析了不同围压的循环加卸载模式下的总能量、弹性应变能和耗散能的演化特征及相互关系,建立了岩石损伤耗散能与循环加载次数及围压的耦合演化方程。结果表明:(1)当载荷小于峰值应力时,加载阶段的弹性模量小于卸载阶段的弹性模量;(2)峰值应力前,载荷所产生的能量主要表现为弹性应变能,而峰值应力后,载荷所产生的能量主要表现为耗散能;(3)随着围压的增加,岩石弹性应变能及耗散能增加;(4)循环加卸载作用下,岩石的耗散能与围压及加卸载循环次数有明显相关性,可以用非线性曲面进行拟合,可为定量分析循环加卸载过程中岩石损伤提供参考。  相似文献   

13.
循环载荷下煤样能量转化与碎块分布特征   总被引:1,自引:0,他引:1       下载免费PDF全文
煤矿开采中煤体常处于反复加卸载过程,研究煤体在不同加载速率重复载荷作用下的能量转化与破坏机制对认清煤矿动力灾害本质具有指导意义。利用MTS815.03伺服实验系统,通过单轴循环加卸载试验,结合能量和分形理论,获得了不同加载速率下煤样变形破坏各阶段能量积聚、耗散和释放的转化机制及其与煤样碎块块度分布规律的内在关系,为开展重复载荷作用下煤岩破裂响应及破坏机制的研究提供依据。试验结果表明:煤样能量转化具有明显的阶段性特征,可分为能量初始积累阶段、能量加速积累阶段和能量快速耗散阶段。煤样破坏前耗散能所占比例经历了高—低—高的过程,而弹性能则相反,加载后期弹性能比例下降或耗散能比例的升高,预示着煤样进入加速破坏阶段;能量集聚和释放与加载速率密切相关,随着加载速率的增大,峰值前弹性能所占比例逐渐增加,煤样破坏前更多的能量以弹性能形式储存在煤样体内,岩石破坏后,更多的能量被释放出来,煤样破坏越剧烈,其宏观破坏形态由剪切张拉和劈裂破坏向弹射破坏过渡;循环加卸载下煤样碎块分形特征具有明显的分段性,在小于尺寸阈值范围内具有较好的自相似性特征,不同加载速率下碎块分形维数为2~3,且随加载速率的增加成线性增长;加载速率越大碎块分形维数越大,煤样破碎程度越高,大块碎块所占比例越小,煤样碎块越破碎且单块碎块质量越小,煤样发生动力灾害的危险性越大。  相似文献   

14.
《煤矿安全》2021,52(7):54-60
为深入研究煤样分级加载蠕变的能量演化及损伤破坏特征,采用岛津AX-G250试验机对煤样进行了分级加载蠕变试验。试验结果表明:应力水平对煤样蠕变过程有显著影响,在煤样破坏前的蠕变应力水平,随蠕变应力的提高,初始减速蠕变阶段持续的时间逐渐增大;煤样分级加载蠕变能量演化过程分为能量停滞、能量稳定增加、能量显著增加和能量释放4个阶段;随蠕变应力水平的提高,弹性能耗比呈"U"型演化规律。基于耗散能量法的损伤公式表明:煤样分级加载蠕变损伤过程可分为损伤线性增加和损伤非线性显著增加2个阶段,后一阶段的出现可作为煤样分级加载蠕变破坏的前兆。  相似文献   

15.
单轴循环荷载作用下砂岩变形特性与能量特征   总被引:2,自引:0,他引:2       下载免费PDF全文
何明明  陈蕴生  李宁  朱才辉 《煤炭学报》2015,40(8):1805-1812
为了研究单轴循环荷载下砂岩的变形与能量特性,利用WDT-1500多功能材料试验机,对砂岩进行不同应力振幅条件下循环加载试验,研究了循环加载过程变形3阶段的变形特性、循环软化与循环硬化及能耗特征,并且建立了耗散能随循环次数变化的演化方程。研究结果表明:① 循环荷载上限高于或者低于砂岩屈服应力时,在循环加载过程中的初始阶段和等速阶段砂岩的环向和轴向变形表现出不同的变形特性;② 单轴压缩条件下的屈服应力是砂岩在循环加载过程中循环硬化和软化特性出现变化的分界点;③ 在循环加载过程中的不同阶段能量耗散特征及其演化规律是不同的,其演化曲线呈现U形或者L形;④ 提出基于Lazan材料阻尼理论的耗散能演化方程,试验数据与计算结果对比显示该方程能够较好地反映砂岩循环加载过程中的能量耗散特征。  相似文献   

16.
岩石试件SHPB劈裂拉伸试验中能量耗散分析   总被引:5,自引:0,他引:5  
利用直径50 mm变截面分离式Hopkinson压杆(SHPB)试验装置,对厚径比0.5的煤矿砂岩巴西圆盘试件进行对径加载,采取改变驱动气压的方法实施不同加载速率的动态劈裂拉伸试验。研究了砂岩试件动态劈裂拉伸破坏过程中的能量构成和耗散特征;尝试从能量角度出发,对砂岩试件动态劈裂拉伸破坏形态、平均应变率效应和动态拉伸应力强度进行能耗分析;发现试件吸收能量绝大部分耗散于岩石的损伤演化和变形破坏,可以较好地反映砂岩试件在冲击载荷作用下的抗拉性能变化。结果表明:砂岩试件拉伸应力强度与吸收能量随平均应变率增加近似对数关系增加,表现出显著的应变率相关性。研究成果可为岩石类脆性材料动态拉伸力学性能研究提供参考。  相似文献   

17.
在煤火治理中常因复燃等原因而多次注浆/水灭火,围岩经历反复升温遇水冷却,致使强度降低,发生破坏,延伸地表形成塌陷、裂缝,造成安全隐患,为此研究了峰后高温冷热循环下岩石力学变化情况;以砂岩为研究对象,测试了岩样超声波波速与吸水率,开展了单轴压缩试验,分析了砂岩力学损伤特征,并进一步探究了其能耗演化规律。结果表明:峰后500℃开始,岩样超声波波速衰减率与吸水变化率由正转为负,波速变小,吸水率增加;500℃为峰后高温岩样力学突变的阈值温度,之后应力应变曲线峰值点快速右移,峰值应力大幅衰落,冷热循环造成的初始热损伤加剧,延性破坏突出;在岩样承压破损不同阶段,能耗演化特征不一;峰后500℃开始,峰前耗散应变能占比逐渐大于弹性应变能,耗散应变能与力学强度负相关。  相似文献   

18.
基于不同加卸载速率真三轴试验,研究砂岩加卸载能量特性的速率效应。结果表明:不同加卸载速率下的能量-应变曲线总体趋势基本相同,即输入的总能前期主要储存岩石弹性能,后期主要转化为用于岩石变形破坏的耗散能;加卸载速率对能量特性存在显著影响,高加载速率或低卸载速率下,岩石破坏时的总能、弹性能、耗散能增大;加载速率越大或卸载速率越小,破坏时的应力越大,卸荷比越小,变形破坏越剧烈,当卸荷比接近最终临界值时,总能与耗散能急剧增大,此时继续少量卸载σ_3就会引起岩石剧烈变形至破坏;加卸载速率改变了岩石的能量分配。  相似文献   

19.
:为了研究煤岩组合体受载失稳和能量积聚及其演化规律,基于 COMSOL数值模拟软件构建了煤 岩和煤 岩 煤组合体、岩 煤 岩组合体模型,并进行单轴压缩试验.结果表明:相同加载条件下,组合体中煤组分占比越大,抗压强度极限越小;组合体积聚的能量转化为内部弹性应变能和损伤耗散能,释放的弹性应变能是导致煤岩体发生破坏的内在因素;单轴压缩作用在煤组分和岩石组分上的应力相等,最大应力均为该组合体的抗压强度σ,组合体内部能量主要积聚在煤组分中,该组分是导致组合体发生变形破坏的能量积聚载体.研究结果可以为降低含夹矸煤层稳定性,提高顶煤回收率提供理论依据.  相似文献   

20.
为研究加载应变率对硬岩的力学性质与能量吸收、储存和耗散的影 响,本文对砂岩试样开展了不同应 变率下的单轴压缩试验,试验结果表明砂岩试样的峰值应力、峰值应变和弹 性模量均随着加载应变率的增大而增大, 但加载应变率对砂岩试样的单轴抗压强度影响显著。 研究了砂岩试验在不 同阶段变形过程中的能量吸收与耗散规 律,得到了砂岩试样在变形前期以弹性应变能的形式储存能量,同时又以损 伤演化等耗散能量,在变形后期以剧烈地 释放能量为主,且加载应变率越大,能量释放率越快。 研究结果表明能量耗 散是导致砂岩试样强度降低的本质原因, 基于能量耗散与裂纹损伤之间的内在联系,得到了加载应变率越大砂岩试样 的损伤应力比、损伤应变与损伤应力也 越大。 从能量吸收与耗散的角度研究硬岩损伤破裂规律,可从本质上揭示 硬岩在外荷载作用下的变形破坏机制,可 为实际工程提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号