首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of adding 330–4930 ppm hydrogen to a reaction mixture of NO and CO (2000 ppm each) over platinum and rhodium catalysts has been investigated at temperatures around 200–250°C. Hydrogen causes large increases in the conversion of NO and, surprisingly, also of CO. Oxygen atoms from the additional NO converted are eventually combined with CO to give CO2 rather than react with hydrogen to form water. This reaction is described by CO + NO +3/2H2 CO2 + NH3 and accounts for 50–100% of the CO2 formed with Pt/Al2O3 and 20–50% with Rh/Al2O3. With the latter catalyst a substantial amount of NO converted produces nitrous oxide. Comparison with a known study of unsupported noble metals suggests that isocyanic acid (HNCO) might be an important intermediate in a reaction system with NO, CO and H2 present.  相似文献   

2.
The catalytic properties of Ni/Al2O3 composites supported on ceramic cordierite honeycomb monoliths in oxidative methane reforming are reported. The prereduced catalyst has been tested in a flow reactor using reaction mixtures of the following compositions: in methane oxidation, 2–6% CH4, 2–9% O2, Ar; in carbon dioxide and oxidative carbon dioxide reforming of methane, 2–6% CH4, 6–12% CO2, and 0–4% O2, and Ar. Physicochemical studies include the monitoring of the formation and oxidation of carbon, the strength of the Ni-O bond, and the phase composition of the catalyst. The structured Ni-Al2O3 catalysts are much more productive in the carbon dioxide reforming of methane than conventional granular catalysts. The catalysts performance is made more stable by regulating the acid-base properties of their surface via the introduction of alkali metal (Na, K) oxides to retard the coking of the surface. Rare-earth metal oxides with a low redox potential (La2O3, CeO2) enhance the activity and stability of Ni-Al2O3/cordierite catalysts in the deep and partial oxidation and carbon dioxide reforming of methane. The carbon dioxide reforming of methane on the (NiO + La2O3 + Al2O3)/cordierite catalyst can be intensified by adding oxygen to the gas feed. This reduces the temperature necessary to reach a high methane conversion and does not exert any significant effect on the selectivity with respect to H2.  相似文献   

3.
The Se(VI)-analogues of ettringite and monosulfate, selenate-AFt (3CaO·Al2O3·3CaSeO4·37.5H2O), and selenate-AFm (3CaO·Al2O3·CaSeO4·xH2O) were synthesised and characterised by bulk chemical analysis and X-ray diffraction. Their solubility products were determined from a series of batch and resuspension experiments conducted at 25 °C. For selenate-AFt suspensions, the pH varied between 11.37 and 11.61, and a solubility product, log Kso=61.29±0.60 (I=0 M), was determined for the reaction 3CaO·Al2O3·3CaSeO4·37.5H2O+12 H+⇔6Ca2++2Al3++3SeO42−+43.5H2O. Selenate-AFm synthesis resulted in the uptake of Na, which was leached during equilibration and resuspension. For the pH range of 11.75 to 11.90, a solubility product, log Kso=73.40±0.22 (I=0 M), was determined for the reaction 3CaO·Al2O3·CaSeO4·xH2O+12 H+⇔4Ca2++2Al3++SeO42−+(x+6)H2O. Thermodynamic modelling suggested that both selenate-AFt and selenate-AFm are stable in the cementitious matrix; and that in a cement limited in sulfate, selenate concentration may be limited by selenate-AFm to below the millimolar range above pH 12.  相似文献   

4.
Supported platinum catalysts containing 1.2% Pt loaded on Al2O3 (1.2% Pt/Al2O3) and 1.9% Pt loaded on ZrO2 (1.9% Pt/ZrO2) were prepared by incipient wetness impregnation and sol–gel method, respectively. The activity of these catalysts in the partial oxidation of ethanol (POE) was examined in a fixed-bed reactor in a temperature range between 373 and 473 K. The results indicated that significant ethanol conversion (CEtOH > 50%) was found at the low reaction temperature with a feed ratio of O2/EtOH ratio >0.75. Oxygen molecules introduced in reactant were completely consumed in POE reactions performed. H2, H2O, CO and CO2 were the major products detected. The selectivity of hydrogen (SH2) and CO (SCO) varied significantly with reaction conditions. High selectivity of hydrogen (SH2 > 95%) and low selectivity of CO (SCO  0%) were found from a mild oxidation at TR = 373 K over Pt/ZrO2. However, these two selectivities were drastically deteriorated through oxidation at high TR, high O2/EtOH ratio or over Pt/Al2O3 catalyst.  相似文献   

5.
Hydro‐liquefaction of a woody biomass (birch powder) in sub‐/super‐critical methanol without and with catalysts was investigated with an autoclave reactor at temperatures of 473–673 K and an initial pressure of hydrogen varying from 2.0 to 10.0 MPa. The liquid products were separated into water soluble oil and heavy oil (as bio‐crude) by extraction with water and acetone. Without catalyst, the yields of heavy oil and water soluble oil were in the ranges of 2.4–25.5 wt % and 1.2–17.0 wt %, respectively, depending strongly on reaction temperature, reaction time, and initial pressure of hydrogen. The optimum temperature for the production of heavy oil and water soluble oil was found to be at around 623 K, whereas a longer residence time and a lower initial H2 pressure were found to be favorite conditions for the oil production. Addition of a basic catalyst, such as NaOH, K2CO3, and Rb2CO3, could significantly promote biomass conversion and increase yields of oily products in the treatments at temperatures less than 573 K. The yield of heavy oil attained about 30 wt % for the liquefaction operation in the presence of 5 wt % Rb2CO3 at 573 K and 2 MPa of H2 for 60 min. The obtained heavy oil products consisted of a high concentration of phenol derivatives, esters, and benzene derivatives, and they also contained a higher concentration of carbon, a much lower concentration of oxygen, and a significantly increased heating value (>30 MJ/kg) when compared with the raw woody biomass. © 2009 American Institute of Chemical Engineers AIChE J, 2009  相似文献   

6.
The antagonistic effects of pressure on reaction equilibrium and permeability were studied for the first time in a membrane reactor (MR). The reaction employed was the catalytic dry-reforming of methane with carbon dioxide (CH4 + CO2 ? 2CO + 2H2) which produces a net increase in moles and is disfavored by high pressure. The studies were conducted at non-equilibrium conditions in a MR containing a hydrogen-selective ceramic membrane and a packed-bed reactor (PBR) at various pressures (1–20 atm) and temperatures (873 and 923 K) using a Rh/Al2O3 catalyst. Because of the concurrent and selective removal of hydrogen from the reaction in the MR significant enhancements over the PBR in the yields for H2 (>170%) and CO (>130%) in the reaction products were obtained. However, as pressure was increased the enhancement in H2 and CO yields in the MR went through a maximum and then declined. This occurred because, although the rate of hydrogen separation increased with increasing pressure, the conversions of the reactants decreased with increasing pressure. Thus, the maximum was due to a tradeoff between a transport property (hydrogen separation) and a thermodynamic quantity (hydrogen production) which had opposing pressure dependencies. It was also found that the reverse water–gas shift (RWGS) reaction (H2 + CO2 ? CO + H2O) occurred simultaneously with the reforming reaction, and at high pressures significantly reduced the amount of hydrogen production in favor of water. The results are general and make the dry-reforming reaction impractical for commercial hydrogen generation regardless of the type of catalyst or reactor used.  相似文献   

7.
Although potassium hydroxide (KOH) is known to be effective in generating highly porous activated carbons, the mechanism of KOH activation has not been well elucidated. To develop porosity in carbon, a high KOH/carbon mass ratio must be maintained. Consequently, KOH, as the activating agent, represents a major part of the cost of the activation process. Focusing on the mechanism, particularly the activation products, the present work attempted to establish the technical feasibility of recycling KOH. Experiments revealed that the major products of KOH activation at 600–900°C are metallic K, K2CO3, CO and H2, which is supported by thermodynamic analysis. The overall reaction may be written as 6KOH + 4C = K2CO3 + 4K + 3H2 + 3CO. At temperatures over 900°C, K2CO3 becomes unstable and participates in activation reactions with carbon; a more suitable overall reaction would be KOH + C = CO + K + 0.5H2. As potassium ion is reduced to metallic K which is readily converted into KOH and hydrogen gas upon reacting with water, KOH recycling is feasible. The reuse of KOH in chemical activation could substantially reduce the cost of activation process. © 2011 Canadian Society for Chemical Engineering  相似文献   

8.
The concept of “waste-to-wealth” is spreading awareness to prevent global warming and recycle the restrictive resources. To contribute towards sustainable development, hydrogen energy is obtained from syngas (CO and H2) generated from waste gasification, followed by CO oxidation and CO2 removal. In H2 generation, it is key to produce more purified H2 from syngas using heterogeneous catalysts. In this respect, we prepared Pt/Al2O3 catalyst with nanoporous structure using precipitation method, and compared its catalytic activity with commercial alumina (Degussa). Based on the results of XRD and TEM, it was found that metal particles did not aggregate on the alumina surface and showed high dispersion. Optimum condition for CO conversion was 1.5 wt% Pt loaded on Al2O3 support, and pure hydrogen was obtained after removal of CO2 gas.  相似文献   

9.
The activity of a novel Ni‐Re/Al2O3 catalyst toward partial oxidation of methane was investigated in comparison with that of a precious‐metal Rh/Al2O3 catalyst. Reactions involving CH4/O2/Ar, CH4/H2O/Ar, CH4/CO2/Ar, CO/O2/Ar, and H2/O2/Ar were performed to determine the kinetic expressions based on indirect partial oxidation scheme. A mathematical model comprising of Ergun equation as well as mass and energy balances with lumped indirect partial oxidation network was applied to obtain the kinetic parameters and then used to predict the reactant and product concentrations as well as temperature profiles within a fixed‐bed microreactor. H2 and CO production as well as H2/CO2 and CO/CO2 ratios from the reaction over Ni‐Re/Al2O3 catalyst were higher than those over Rh/Al2O3 catalyst. Simulation revealed that much smoother temperature profiles along the microreactor length were obtained when using Ni‐Re/Al2O3 catalyst. Steep hot‐spot temperature gradients, particularly at the entrance of the reactor, were, conversely, noted when using Rh/Al2O3 catalyst. © 2017 American Institute of Chemical Engineers AIChE J, 64: 1691–1701, 2018  相似文献   

10.
The reaction of methane-derived coke (CHx: intermediate of the reforming reaction and also a source of coke deposition) with CO2 was studied on supported Pt catalysts in relation with CO2 reforming of methane. Temperature-programmed hydrogenation (TPH) was performed to investigate the reactivity of coke deposition after the catalyst was exposed to CH4/He at 1070 K. Coke on Pt/Al2O3 could be hydrogenated around 873 K, while for Pt/ZrO2 this was above 1073 K. The results indicate that the reactivity of coke with hydrogen was higher on Pt/Al2O3 than on Pt/ZrO2, which was different from the reactivity of coke towards CO2. Thus, the reactivity of CO2 was studied and compared on these catalysts by several technics. The amount of CO evolution was measured during CO2 flow at 1070 and 875 K. Rate and amount of converted CO2 were higher on Pt/ZrO2 than on Pt/Al2O3. Pt/ZrO2 was proven to react with CO2 to produce CO and active oxygen (CO2CO+O) (probably on its oxygen defect site) more easily than Pt/Al2O3.  相似文献   

11.
江罗  陈标华  张吉瑞 《化工学报》2012,63(11):3519-3524
用浸渍法制备了以Al2O3为载体、Ni为活性组分的Ni/Al2O3二氧化碳甲烷化催化剂,在等温固定床反应器中研究了在Ni/Al2O3催化剂作用下,高纯氯化氢中微量CO2甲烷化反应效果,并考察了温度、压力、氯化氢体积空速以及H2/CO2摩尔比对CO2转化率的影响,同时研究了催化剂活性、稳定性及其再生性能。结果表明,在温度为250℃、压力为4.0 MPa、氯化氢空速为100 h-1、H2/CO2摩尔比为500:1条件下,CO2甲烷化反应效果最好,其转化率可达到90%左右,对于高纯氯化氢中微量CO2的脱除起到很好的效果;催化剂在温度高于300℃时,反应不久后会迅速失活;催化剂再生性能只能部分恢复到新鲜水平。  相似文献   

12.
The oxidation of high-purity aluminium sheet in dry oxygen, moist oxygen, carbon dioxide and carbon monoxide (at total pressure 1.333 × 103 Nm?2) was studied in the range 673–923°K, using a vacuum microbalance to follow weight gains. 14CO2 and 14CO were used to elucidate the mechanism of the oxidation in these gases and to estimate the extent of carbon deposition in the oxide layer. The rate of oxidation in moist oxygen was similar to that in dry oxygen, the principle reaction being 2Al + 3H2O ← Al2O3 + 3H2. It is suggested that there are three steps in the reaction in CO2, viz. 2Al+3CO2 ← Al2O3 + 3CO, followed by 2Al + 3CO ← Al2O3 + 3C, and about 10% of the deposited carbon reacting further by 4Al + 3C ← Al4C3. Only the last two reactions are operative in carbon monoxide. The Arrhenius plots show a distinct break in the region 773–823°K for both carbon monoxide and carbon dioxide, but not for dry or moist oxygen. This is tentatively explained by a change in the rate-determining process from diffusion via grain boundaries or cracks in the oxide, to lattice diffusion. It is suggested that carbon may become mobile in the oxide film between 773 and 823°K and may tend to congregate in the grain boundaries and cracks. The oxide film remained protective throughout the duration of the experiments in all the gases.  相似文献   

13.
The performance of a hybrid solid acid catalyst consisting of a physical mixture of γ‐Al2O3 and H‐ZSM‐5 in terms of the rate and heat duty for solvent regeneration (i.e., CO2 stripping) of a CO2‐rich MEA solution was compared with the individual performance of γ‐Al2O3, H‐ZSM‐5, and H‐Y solid acid catalysts using MEA (2–7 mol/L), with initial CO2 loading of 0.5 mol CO2/mol MEA at 378 K. It was observed that any catalyst significantly decreased the energy required for CO2 regeneration. The performance of the catalysts investigated ranked as follows: γ‐Al2O3/H‐ZSM‐5 = 2/1 > γ‐Al2O3 > H‐ZSM‐5 > H‐Y if the process is in the lean CO2 loading region whereas it was H‐ZSM‐5 > γ‐Al2O3/H‐ZSM‐5 = 2/1 > γ‐Al2O3 > H‐Y if the process is in the rich CO2 loading region. These results highlight the joint dependence on Brønsted/Lewis acidity and mesopore surface area of heat duty for solvent regeneration. © 2015 American Institute of Chemical Engineers AIChE J, 62: 753–765, 2016  相似文献   

14.
Ni/CaO‐Al2O3 bifunctional catalysts with different CaO/Al2O3 mass ratios were prepared by a sol–gel method and applied to the sorption‐enhanced steam methane reforming (SESMR) process. The catalysts consisted mainly of Ni, CaO and Ca5Al6O14. The catalyst structure depended strongly on the CaO/Al2O3 mass ratio, which in turn affected the CO2 capture capacity and the catalytic performance. The catalyst with a CaO/Al2O3 mass ratio of 6 or 8 possessed the highest surface area, the smallest Ni particle size, and the most uniform distribution of Ni, CaO, and Ca5Al6O14. During 50 consecutive SESMR cycles at a steam/methane molar ratio of 2, the thermodynamic equilibrium was achieved using the catalyst with a CaO/Al2O3 mass ratio of 6, and H2 concentration profiles for all the 50 cycles almost overlapped, indicating excellent activity and stability of the catalyst. Moreover, a high CO2 capture capacity of 0.44 was maintained after 50 carbonation–calcination cycles, being almost equal to its initial capacity (0.45 ). © 2014 American Institute of Chemical Engineers AIChE J, 60: 3547–3556, 2014  相似文献   

15.
More than 130 Pt and Pd bimetallic catalysts were screened for hydrogen production by aqueous-phase reforming (APR) of ethylene glycol solutions using a high-throughput reactor. Promising catalysts were characterized by CO chemisorption and tested further in a fixed bed reactor. Bimetallic PtNi, PtCo, PtFe and PdFe catalysts were significantly more active per gram of catalyst and had higher turnover frequencies for hydrogen production (TOFH2) than monometallic Pt and Pd catalysts. The PtNi/Al2O3 and PtCo/Al2O3 catalysts, with Pt to Co or Ni atomic ratios ranging from 1:1 to 1:9, had TOFH2 values (based on CO chemisorption uptake) equal to 2.8–5.2 min−1 at 483 K for APR of ethylene glycol solutions, compared to 1.9 min−1 for Pt/Al2O3 under similar reaction conditions. A Pt1Fe9/Al2O3 catalyst showed TOFH2 values of 0.3–4.3 min−1 at 453–483 K, about three times higher than Pt/Al2O3 under identical reaction conditions. A Pd1Fe9/Al2O3 catalyst had values of TOFH2 equal to 1.4 and 4.3 min−1 at temperatures of 453 and 483 K, respectively, and these values are 39–46 times higher than Pd/Al2O3 at the same reaction conditions. Catalysts consisting of Pd supported on high surface area Fe2O3 (Nanocat) showed the highest turnover frequencies for H2 production among those catalysts tested, with values of TOFH2 equal to 14.6, 39.1 and 60.1 min−1 at temperatures of 453, 483 and 498 K, respectively. These results suggest that the activity of Pt-based catalysts for APR can be increased by alloying Pt with a metal (Ni or Co) that decreases the strengths with which CO and hydrogen interact with the surface (because these species inhibit the reaction), thereby increasing the fraction of catalytic sites available for reaction with ethylene glycol. The activity of Pd-based catalysts for APR can be increased by adding a water-gas shift promoter (e.g. Fe2O3).  相似文献   

16.
A thin‐sheet Al‐fiber@meso‐Al2O3@Fe‐Mn‐K catalyst is developed for the mass/heat‐transfer limited Fischer–Tropsch synthesis to lower olefins (FTO), delivering a high iron time yield of 206.9 µmolCO s?1 at 90% CO conversion with 40% selectivity to C2‐C4 olefins under optimal reaction conditions (350°C, 4.0 MPa, 10,000 mL/(g·h)). A microfibrous structure consisting of 10 vol % 60‐µm Al‐fiber and 90 vol % voidage undergoes a steam‐only‐oxidation and calcination to create 0.6 µm mesoporous γ‐Al2O3 shell along with the Al‐fiber core. Active components of Fe and Mn as well as additives (K, Mg, or Zr) are then placed into the pore surface of γ‐Al2O3 shell of the Al‐fiber@meso‐Al2O3 composite by incipient wetness impregnation method. Neither Mg‐modified nor Zr‐modified structured catalyst yields better FTO results than K‐modified one, because of their lower reducibility, poorer carbonization property, and fewer basicity. The favorable heat/mass‐transfer characteristics of this new approach are also discussed. © 2015 American Institute of Chemical Engineers AIChE J, 62: 742–752, 2016  相似文献   

17.
Water gas shift reaction on supported noble metal catalysts is an essential process for upgrading hydrogen source industrially. Here a series of Pd/FeOx catalysts were detected for this reaction with Pd/Al2O3 as reference. It was found that Pd/FeOx exhibited higher CO conversion than Pd/Al2O3 with a good stability even in the presence of CO2 and H2. Along the loading decreasing, the turnover frequency of exposed Pd atoms increased with the dispersion from subnanometer (~1 nm) to single atoms. Various characterizations suggested that Pd single atoms greatly enhanced the reducibility of FeOx and facilitated the formation of oxygen vacancies, which served as sites to promote the dissociation of H2O to form H2 and atomic O. The atomic O was ready to react with the linear adsorbed CO species on Pd single‐atom sites through a redox mechanism, which resulted in low activation energy of ~30 kJ mol?1. © 2017 American Institute of Chemical Engineers AIChE J, 63: 4022–4031, 2017  相似文献   

18.
《Fuel》2006,85(7-8):1052-1059
Dehydrochlorinated poly(vinyl chloride) (PVC) and activated carbon were pyrolyzed with sodium hydroxide in a flow of steam and nitrogen at 3.0 MPa and 560–660 °C. In both cases, hydrogen and sodium carbonate were the main products, and methane, ethane, and carbon dioxide were minor products. The gasification rate increased with partial steam pressure, and the reaction order with respect to steam partial pressure was 0.69. For both dehydrochlorinated PVC and activated carbon, the gasification rate increased with the NaOH/C molar ratio. However, the rate became saturated at NaOH/C ratios higher than 2.0. The activation energy of gasification of dehydrochlorinated PVC or activated carbon was 178 kJ/mol, assuming first-order reaction rate. These experimental results indicate that hydrogen was produced from the reaction: C+2NaOH+H2O→Na2CO3+2H2.  相似文献   

19.
A co-precipitation method was employed to prepare Ni/Al2O3-ZrO2, Co/Al2 O3-ZrO2 and Ni-Co/Al2O3-ZrO2 catalysts. Their properties were characterized by N2 adsorption (BET), thermogravimetric analysis (TGA), temperature-programmed reduction (TPR), temperature-programmed desorption (CO2-TPD), and temperature-programmed surface reaction (CH4-TPSR and CO2-TPSR). Ni-Co/Al2O3-ZrO2 bimetallic catalyst has good performance in the reduction of active components Ni, Co and CO2 adsorption. Compared with mono-metallic catalyst, bimetallic catalyst could provide more active sites and CO2 adsorption sites (C + CO2 = 2CO) for the methane-reforming reaction, and a more appropriate force formed between active components and composite support (SMSI) for the catalytic reaction. According to the CH4-CO2-TPSR, there were 80.9% and 81.5% higher CH4 and CO2 conversion over Ni-Co/Al2O3-ZrO2 catalyst, and its better resistance to carbon deposition, less than 0.5% of coke after 4 h reaction, was found by TGA. The high activity and excellent anti-coking of the Ni-Co/Al2O3-ZrO2 catalyst were closely related to the synergy between Ni and Co active metal, the strong metal-support interaction and the use of composite support.  相似文献   

20.
The development of a nickel composite membrane with acceptable hydrogen permselectivity at high temperature in a membrane reactor for the highly endothermic dry reforming of methane reaction was the purpose of this work. A thin, catalytically inactive nickel layer, deposited by electroless plating on asymmetric porous alumina, behaved simply as a selective hydrogen extractor, shifting the equilibrium in the direction of a higher hydrogen production and methane conversion. The main advantage of such a nickel/ceramic membrane reactor is the elimination or limitation of the side reverse water gas shift reaction. For a Ni/Al2O3 catalyst, containing free Ni particles, normally sensitive to coking, the use of the membrane reactor allowed an important reduction of carbon deposition (nanotubes) due to restriction of the Boudouard reaction. For a Ni–Co/Al2O3 catalyst, where the metallic nickel phase was stabilized by the alumina, the selective removal of the hydrogen significantly enhanced both methane conversion (+67% at 450 °C, +22% at 500 °C and +18% at 550 °C) and hydrogen production (+42% at 450 °C, +32% at 500 °C and +22% at 550 °C) compared to the results obtained for a packed-bed reactor. The hydrogen selectivity during the catalytic tests at 550 °C, maintained with constant separation factors (7 for H2/CH4, 8 for H2/CO and 10 for H2/CO2), higher than Knudsen values, attested to the high thermal stability of the nickel composite membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号