首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
荣传新  王秀喜  蔡海兵  程桦 《煤炭学报》2011,36(12):2102-2108
将煤矿立井混凝土井壁视为多孔介质,考虑地下水渗流作用的影响,应用统一强度理论和弹塑性损伤力学模型,推导出立井混凝土井壁弹性区和塑性损伤区应力的解析表达式,以及井壁承受的地下水压与塑性损伤区半径之间关系的解析表达式。同时绘制了不同的φ(混凝土孔隙率)和λ/E(混凝土损伤后的降模量与弹性模量之比)值与井壁承受水压p0和塑性损伤区半径c之间的关系曲线。研究结果表明:在井壁几何尺寸和混凝土强度等级不变情况下,不考虑地下水渗流对井壁的影响时(φ=0),井壁能够承受的临界水压p0c为31.9 MPa;当φ取0.4时,p0c为15.1 MPa,井壁能够承受的临界水压下降了52.7%。当λ/E取0.5时,p0c为30.5 MPa;当λ/E取2.5时,p0c为18.6 MPa,井壁能够承受的临界水压下降了39.0%。由此可见,在考虑地下水渗流对井壁影响的情况下,地下水渗流效应和混凝土损伤软化对井壁能够承受的临界水压p0c影响十分显著,井壁能够承受的临界水压随着混凝土孔隙率φ和混凝土损伤后的降模量与弹性模量之比λ/E的增加而减小。  相似文献   

2.
首先从渗流-损伤耦合角度深入研究水压致裂破坏机理,探讨水压致裂过程的渗流-损伤耦合效应,提出了研究水压致裂的难点是破坏模式及失稳压力的确定.针对矿山采动岩体破坏突水问题,系统解释了渗透系数、有效应力系数在突水机理研究中的工程意义.其次,通过对煤层开采过程中底板突水实例模拟,分析了渗流-损伤耦合作用,从稳态和瞬态两个方面探讨了不同有效应力系数条件下煤矿底板突水过程的渗流-损伤耦合效应.研究结果表明:岩层破坏突水不仅和岩层的应力状态和力学强度密切相关,而且还受控于岩层的渗流力学指标;煤层底板有效应力系数越大,突水失稳临界水压越小;渗透系数越大,突水失稳临界水压越小,这对深刻理解岩体破坏突水的渗流力学本质和突水系数的内涵,具有重要的理论和实用价值.  相似文献   

3.
为了改善高强井壁混凝土的脆性特征,配制出了CF80高强钢纤维井壁混凝土,并对其基本力学性能和三轴抗压强度进行了试验研究。试验结果表明:在混凝土中加入20~40 kg/m3钢纤维,抗拉强度值可提高47.0%~68.3%,明显地改善高强混凝土的脆性特征;钢纤维掺量的改变对高强混凝土的立方体抗压强度和轴心抗压强度影响不大,对弹性模量和泊松比几乎没有影响;三轴抗压试验表明,钢纤维的加入能够提高试件破坏的峰值应变和残余强度,显著改善试件的破坏形态。因此,高强钢纤维混凝土能够满足深井高强井壁对混凝土高性能特性需求。  相似文献   

4.
五十年代末,我国根据底板突水资料采用了突水系数这一概念,即每米厚度隔水层承受的临界水压值,借以衡量和确定降低煤层底板水压的安全水头值。目前通用的突水系数数学表达式为  相似文献   

5.
矿井岩溶突水灾变机理   总被引:1,自引:0,他引:1       下载免费PDF全文
结合湖南娄底市七一煤矿石坝井岩溶突水、突泥实例,运用损伤力学及岩体流体力学理论,研究矿井岩溶突水的渗流-损伤-断裂耦合成灾机理,通过FISH研制矿井岩溶突水的渗流-损伤-断裂耦合分析程序(扩展FLAC3D模型),对七一煤矿岩溶突水成灾过程进行耦合分析,探讨巷道掘进过程中围岩渗流场和岩柱的劈裂损伤演化规律。耦合研究认为:七一煤矿石坝井岩溶突水事故是裂隙渗透压与围岩次生应力场共同作用下茅口灰岩岩柱损伤演化;在高渗透体积力与围岩次生应力的耦合作用下,处于全损伤状态的岩柱水力劈裂导致矿井岩溶突水成灾;耦合分析发现矿井岩溶突水具有渗透系数突变、渗透体积力突变及位移突变等特性。探讨了防范矿井充填型溶洞突水高风险的应对措施及合理的岩溶突水临界岩柱。  相似文献   

6.
刘娟红  周昱程  杨海涛  付士峰  谷峪 《煤炭学报》2019,44(10):2983-2989
针对深部矿井井壁混凝土产生类似"岩爆"现象的问题,从典型种类混凝土动力学性能角度出发,采用直径为75 mm的分离式霍普金森杆(SHPB)和超声检测装置对普通高强混凝土(NHSC)、钢纤维混凝土(SFRC)和免蒸养活性粉末混凝土(NSC-RPC)进行动力学试验。研究单次和多次冲击荷载作用下,不同种类混凝土的应力、应变行为,能量输入与耗散特征以及损伤程度。分析子弹的冲击速度、混凝土内部能量和损伤程度3者之间的相关关系,探明不同种类混凝土的失效特征与机理。结果表明:3种典型种类混凝土的应力应变、能量和损伤值皆与冲击速度呈正相关性。NSC-RPC的能量承受和耗散能力是NHSC和SFRC的两倍左右,同时NSC-RPC要产生可测损伤值所需要的临界冲击速度亦高于另外两者。多次冲击荷载导致混凝土应力峰值降低,应变增大,材料的承载能力弱化,但多次的冲击行为对NSC-RPC的劣化程度最小,且在多次较低速的冲击荷载下,NSC-RPC仍未出现可测损伤值。在3种典型种类混凝土中,NSC-RPC具有最为优异的抗冲击能力,将NSC-RPC应用为深部地下工程井壁以及关键结构部位材料更具有优势。本工作从应力应变、能量与损伤等多方位因素,揭示深竖井井壁结构在服役期限内的损伤、失效机理,提出深部井筒支护材料的改善措施,为超深井井壁混凝土材料的选择提供可靠的理论依据。  相似文献   

7.
为研究受地应力与渗透水压耦合作用下的深部岩体受到爆破等动力扰动的力学响应,研制了渗透水压加载装置,对含裂纹类岩石材料的混凝土试样加载预应力后,进行有渗透水压作用和无渗透水压作用下单轴循环加卸载压缩破坏对比试验。试验结果表明,在试样弹性阶段加载有限次循环载荷有助于类岩石材料的强化;在有渗透水压作用下,单轴循环加卸载后岩石的强度降低,降低的程度与循环载荷加载时预应力的大小有关,在弹性阶段加载循环载荷的岩石强度高于在损伤阶段加载循环载荷的岩石强度,而且在渗透水压作用下岩石的应变大于无渗透水压作用下岩石的应变。具有岩爆倾向性的岩石可以通过加载、卸载产生损伤以降低其岩爆倾向性,同时低渗透水压的作用可使岩爆降低程度更剧。  相似文献   

8.
为模拟深部井筒不同工作环境下高强混凝土力学性能,将高强混凝土试件浸没入不同高压(1、2、3、4 MPa)水体中48 h,以形成孔隙水压,并在TAW-3000试验机上进行单轴抗压试验,对孔隙水压作用后高强混凝土的抗压强度、弹性模量、峰值应变、体应变等指标的变化及其破坏形态进行了研究分析,并与未经水压作用的高强混凝土进行对比。研究结果表明,经孔隙水压作用后的高强混凝土应力-应变曲线和应力-体应变曲线的弹性极限提高了约10%。孔隙水压每提高1 MPa,高强混凝土的抗压强度损失率平均为2.93%、弹性模量损失率平均为2.96%。高强混凝土的开裂速度加快,脆性破坏特征更明显,且随着孔隙水压的增加,混凝土的抗压强度和弹性模量都表现出降低的趋势。  相似文献   

9.
西部地区深基岩冻结井筒井壁结构设计与优化   总被引:7,自引:3,他引:4       下载免费PDF全文
针对西部地区深基岩冻结井筒支护结构设计中出现的技术难题,通过室内冻胀试验结果表明:西部地区岩石冻胀性弱,冻结压力小,外壁设计主要应满足厚壁圆筒结构对厚度的要求。根据渗流场理论分析表明:在不进行壁后围岩注浆情况下,如果井壁基本不渗水,井壁将承受全水压;如果井壁出现渗漏水,则井壁承受的水压将大大减小,水压力折减系数主要取决于围岩渗透系数与井壁混凝土渗透系数的比值关系。在进行壁后注浆条件下,注浆效果越好,围岩渗透性越小,在井壁渗透系数相同情况下,井壁承受的水压力将得到大大减小。并提出可采用内、外壁间提前注浆技术、对壁后围岩进行深孔注浆等井壁结构优化途径。  相似文献   

10.
深表土井筒由于凿井难度较大,为了满足工程各项要求,应优先考虑采用高强混凝土井壁.阐述了采用高强混凝土井壁的必要性.结合实例,介绍了高强混凝土配制的具体做法.指出了高强混凝土脆性等问题通过采取必要的措施是完全可以克服的,同时指出了冻结井筒采用高强混凝土井壁不必担心混凝土受冻问题.  相似文献   

11.
为解决我国能源短缺问题,两淮地区掀起了建国以来规模最大的新井建设高潮,此次开发均为深部资源,井筒穿越的冲积层深厚,为了降低井壁厚度,提高井壁混凝土的耐久性,筑壁材料采用了高强高性能混凝土,为了确保施工中使用的高强高性能混凝土既经济合理又强度可靠,对深厚表土冻结井壁的高强高性能混凝土进行了试验研究,并成功在淮南矿业集团丁集矿井建设中应用。  相似文献   

12.
采动底板断层突水危险性预测与评价是煤矿底板突水灾害防治的基础和依据。针对断层诱发底板突水问题,基于岩体极限平衡理论,综合考虑断层本身性质和矿山压力中应力降低区的作用,得出底板隔水层的极限水压解析式,提出突水力学判据。结合工程背景,基于多物理场软件COMSOL Multiphysics建立数值模型,计算了隔水层中承受的实际水压。基于突水力学判据,该矿底板隔水层所承受的极限水压大于隔水层中承受的实际水压,底板隔水层完整,不发生突水。结果表明:底板断层突水危险性预测结果与实际开采过程中结果相吻合。  相似文献   

13.
冻结段井壁的基本结构形式是双层井壁.为提高外层井壁快速抗压能力以及减少施工时冻结壁对井壁的影响,通过试验,在普通混凝土中添加外加剂,配制成不同标号的高强高性能混凝土,在减小井壁厚度的条件下,能有效提高混凝土早期强度,防裂密实,降低水化热,防止外层井壁被压坏和减少井壁施工时产生的温度裂缝,提高封水和抗压能力.  相似文献   

14.
断层影响下底板采动临界突水水压解析解   总被引:3,自引:0,他引:3  
考虑采动矿压和煤层隔水底板下承压含水层水压的联合作用,推导出断层影响下底板突水的水压力解析式。运用试算法搜索出最危险底板剪切破裂面及临界突水水压。在此基础上,分析了工作面开切眼到断层带距离、断层倾角、工作面推进方向以及侧压力系数等因素对底板临界突水水压的影响规律。算例显示,临界突水水压随工作面开切眼到断层带距离的加大而减小;随着断层倾角的减小,临界突水水压先减小后增加,但当断层倾角小于某一临界角度时,底板不沿断层面破坏;由断层下盘向上盘推进时的临界突水水压较由断层上盘向下盘推进时大,但无论工作面的推进方向如何,临界突水水压皆随着工作面过断层带距离的加大而逐步减小;随着侧压力系数的加大,临界突水水压先增大后逐渐减小。实例应用表明,临界突水水压计算判别结果与实际情况吻合。  相似文献   

15.
含水层水压对底板断层突水危险性的影响   总被引:2,自引:0,他引:2  
随着煤矿开采深度的增加,受奥灰岩溶底板高承压水的威胁日趋严重,矿井突水事故的频率不断增加。建立了弹塑性多孔介质渗流应力耦合模型,并基于多物理场耦合模型软件COMSOL Multiphysics,结合徐州某矿突水实例,分析了含水层水压的变化对含断层底板突水危险性的影响。研究表明:随着含水层水压的增大,岩体介质的有效应力减小,岩体强度降低并容易产生塑性破坏;含水层水压越大,底板的塑性破坏区范围越大,含断层底板的突水危险性越大。研究结果可为承压水上采煤底板断层突水的防治提供参考。  相似文献   

16.
牛军 《煤》2011,20(4):63-64,66
高强混凝土作为一种新的建筑材料,具有强度高、变形小、良好的抗渗性和抗冻性。将高强混凝土用于深厚表土层立井井筒工程中,能满足我国不断加深的钻井和冻结井筒建设的需要。高强混凝土复合井壁具有减小井壁厚度,防止井壁渗水,降低建井成本的优点。  相似文献   

17.
深表土中高强钢筋混凝土井壁力学性能的试验研究   总被引:11,自引:1,他引:11  
姚直书  程桦  杨俊杰 《煤炭学报》2004,29(2):167-171
针对500~700m深表土中冻结井筒的支护难题,提出合理的技术途径,即采用现浇高强钢筋混凝土井壁结构。通过模型试验,对这种井壁结构的应力特性和强度特征进行了深入研究,结果表明:高强钢筋混凝土井壁具有很高的承载力,且增大钢筋含量对井壁承载力影响很小,但提高混凝土的强度等级可显著地提高井壁的承载力,并根据理论分析和试验结果推导出了这种井壁承载力的计算公式,从而为该种高强井壁结构的工程应用提供了设计依据。  相似文献   

18.
关永强 《煤矿安全》2014,(2):115-118
依据黄沙矿112124掘进工作面突水治理工程,所进行的大量工程水文地质资料,对该工程的难点以及面临的技术难题,进行了应用研究和实践。由于煤层软、强度低、突水水压高,突水巷道几次实现截流后,骨料帷幕墙被反复突破。依现场实际水文资料,分析确定了突水巷道煤层的极限承受强度,合理确定了水闸墙承受的压力,通过水闸墙分压减流作用,降低了突水煤巷骨料帷幕墙与煤层所承受的压力,在高承压松软煤巷高承压特大突水封堵中,实现突水巷道成功截流,通过注浆加固骨料帷幕墙,并采取其他措施,快速高效治理了这次特大突水。  相似文献   

19.
水闸墙在高承压松软煤巷特大突水治理中的应用   总被引:2,自引:0,他引:2  
依据黄沙矿112124掘进工作面突水治理工程,所进行的大量工程水文地质资料,对该工程的难点以及面临的技术难题,进行了应用研究和实践。由于煤层软、强度低、突水水压高,突水巷道几次实现截流后,骨料帷幕墙被反复突破。依现场实际水文资料,分析确定了突水巷道煤层的极限承受强度,合理确定了水闸墙承受的压力,通过水闸墙分压减流作用,降低了突水煤巷骨料帷幕墙与煤层所承受的压力,在高承压松软煤巷高承压特大突水封堵中,实现突水巷道成功截流,通过注浆加固骨料帷幕墙,并采取其他措施,快速高效治理了这次特大突水。  相似文献   

20.
断层影响下底板隔水层的破坏机理研究   总被引:1,自引:0,他引:1  
为了研究断层对底板隔水层稳定性的影响,根据岩石剪切破坏的极限平衡条件推导出隔水层破坏的临界水压力公式,并提出突水判据.基于临界水压力公式分析了断层倾角、内聚力和断层煤柱宽度对底板隔水层破坏的影响规律.结果表明,断层倾角越小,底板隔水层能够承受的临界水压越小,底板就越容易发生突水;若断层带内聚力越小,即断层带强度越软弱,底板临界水压力也随之减小,此时底板发生突水的可能性越大;断层煤柱留设宽度越大,底板越不容易发生突水.工程应用表明预设的煤柱宽度偏小,有发生底板突水的可能,为保证安全开采,根据所推出的临界水压力公式计算得出合理的断层煤柱宽度应为34.3 m.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号