首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, a lab‐scale sequencing batch reactor (SBR) has been tested to remove chemical oxygen demand (COD) and NH4+‐N from the supernatant of anaerobic digestion of the organic fraction of municipal solid waste. This supernatant was characterized by a high ammonium concentration (1.1 g NH4+‐N L?1) and an important content of slowly biodegradable and/or recalcitrant COD (4.8 g total COD L?1). Optimum SBR operating sequence was reached when working with 3 cycles per day, 30 °C, SRT 12 days and HRT 3 days. During the time sequence, two aerobic/anoxic steps were performed to avoid alkalinity restrictions. Oxygen supply and working pH range were controlled to promote the nitrification over nitrite. Under steady state conditions, COD and nitrogen removal efficiencies of more than 65% and 98%, respectively, were achieved. A closed intermittent‐flow respirometer was used to characterize and model the SBR performance. The activated sludge model ASM1 was modified to describe the biological nitrogen removal over nitrite, including the inhibition of nitrification by unionized ammonia and nitrous acid concentrations, the pH dependency of both autotrophic and heterotrophic biomass, pH calculation and the oxygen supply and stripping of CO2 and NH3. Once calibrated by respirometry, the proposed model showed very good agreement between experimental and simulated data. Copyright © 2007 Society of Chemical Industry  相似文献   

2.
Simultaneous organic carbon and nitrogen removal was studied in a sequencing batch reactor (SBR) fed with synthetic municipal wastewater and controlled at a low dissolved oxygen (DO) level (0.8 mg dm?3). Experimental results over a long time (120 days) showed that the reactor achieved high treatment capacities (organic and nitrogen loading rates reached as high as 2.4 kg COD m?3 d?1 and 0.24 kg NH3‐N m3 d?1) and efficiencies (COD, NH3‐N and total nitrogen removal efficiencies were 95%, 99% and 75%). No filamentous bacteria were found in the sludge even though the reactor had been seeded with filamentous bulking sludge. Instead, granular sludge, which possessed high activity and good settleability, was formed. Furthermore, the sludge production rate under low DO was less than that under high DO. Significant benefits, such as low investment and less operating cost, will be obtained from the new process. © 2001 Society of Chemical Industry  相似文献   

3.
Anaerobic Ammonia Oxidising (Anammox) biomass was enriched from sludge collected at a municipal wastewater treatment plant, employing a Sequential Batch Reactor (SBR). After 60 days Anammox activity started to be detected, by consumption of stoichiometric amounts of NO2? and NH4+ in the system. Fluorescence In Situ Hybridisation analysis confirmed the increase of Anammox bacteria concentration with time. A final concentration of enriched biomass of 3–3.5 gVSS dm?3 was obtained, showing a Specific Anammox Activity of 0.18 gNH4+‐N gVSS?1 d?1 The reactor was able to treat nitrogen loading rates of up to 1.4 kgN m?3 d?1, achieving a removal efficiency of 82 %. On the other hand, the start‐up and operation of the Anammox SBR reactor were consequentially modelled with the Activated Sludge Model nr 1, extended for Anammox. The simulations predicted quite well the experimental data in relation to the concentrations of nitrogenous compounds and can be used to estimate the evolution of Anammox and heterotrophic biomass in the reactor. These simulations reveal that heterotrophs still remain in the system after the start‐up of the reactor and can protect the Anammox microorganisms from a negative effect of the oxygen. Copyright © 2004 Society of Chemical Industry  相似文献   

4.
Biological systems for the treatment of wastewater have to provide optimum sludge retention to achieve high removal efficiencies. In the case of slow‐growing micro‐organisms, such as anaerobic ammonia‐oxidizing (Anammox) bacteria, episodes of flotation involving biomass wash‐out are especially critical. In this study a strategy based on the introduction of a mix period in the operational cycle of the Anammox Sequencing Batch Reactor (SBR) was tested for its effects on biomass retention and nitrite removal. Using this new cycle distribution the biomass retention inside the reactor improved as the solids concentration in the effluent of the SBR decreased from 20–45 to 5–10 mg VSS dm?3 and the biomass concentration inside the reactor increased from 1.30 to 2.53 g VSS dm?3 in a period of 25 days. A decrease of the sludge volume index (SVI) from 108 to 60 cm3 g VSS?1 was also observed. Complete depletion of nitrite was achieved in the reactor only with the new cycle distribution treating nitrogen loading rates (g N‐NO2? + g N‐NH4+ dm?3 d?1) up to 0.60 g N dm?3 d?1. Copyright © 2004 Society of Chemical Industry  相似文献   

5.
Selective nitrification was carried out to accumulate nitrite from high strength ammonia wastewater in an autotrophic nitrifying biofilm reactor. Nitrification efficiencies and nitrite accumulation characteristics were investigated at various operating conditions such as ammonium load, oxygen supply and free ammonia concentration. The biofilm reactor showed very stable nitrification efficiencies of more than 90% at up to 2 kg NH4‐N m?3 d?1 and the nitrite content was maintained at around 95%. Inhibition by free ammonia on nitrite oxidizers seems to be the major factor for nitrite accumulation. Batch kinetic analyses of ammonium and nitrite oxidation showed that nitrite oxidation activity was selectively inhibited in the presence of free ammonia. However, the activity recovered quickly as the free ammonia concentration decreased below the threshold inhibition concentration. Examination of specific ammonia and nitrite oxidation activities and the most probable number indicated that the number of nitrite‐oxidizing microorganisms in the nitrite‐accumulating system was less than that in the normal nitrification system due to long‐term free ammonia inhibition of the nitrite oxidizers. The reduced population of nitrite oxidizers in the biofilm system was also responsible for the accumulation of nitrite in the biofilm reactor. © 2003 Society of Chemical Industry  相似文献   

6.
Most of the kinetic studies on nitrification have been performed in diluted salts medium. In this work, the ammonia oxidation rate (AOR) was determined by respirometry at different ammonia (0.01 and 33.5 mg N‐NH3 L?1), nitrite (0–450 mg N‐NO2? L?1) and nitrate (0 and 275 mg N‐NO3? L?1) concentrations in a saline medium at 30 °C and pH 7.5. Sodium azide was used to uncouple the ammonia and nitrite oxidation, so as to measure independently the AOR. It was determined that ammonia causes substrate inhibition and that nitrite and nitrate exhibit product inhibition upon the AOR. The effects of ammonia, nitrite and nitrate were represented by the Andrews equation (maximal ammonia oxidation rate, rAOMAX, = 43.2 [mg N‐NH3 (g VSSAO h)?1]; half saturation constant, KSAO, = 0.11 mg N‐NH3 L?1; inhibition constant KIAO, = 7.65 mg N‐NH3 L?1), by the non‐competitive inhibition model (inhibition constant, KINI, = 176 mg N‐NO2? L?1) and by the partially competitive inhibition model (inhibition constant, KINA, = 3.3 mg N‐NO3? L?1; α factor = 0.24), respectively. The rAOMAX value is smaller, and the KSAO value larger, than the values reported in diluted salts medium; the KIAO value is comparable to those reported. Process simulations with the kinetic model in batch nitrifying reactors showed that the inhibitory effects of nitrite and nitrate are significant for initial ammonia concentrations larger than 100 mg N‐NH4+ L?1. Copyright © 2005 Society of Chemical Industry  相似文献   

7.
The nitrifying component of a micro‐ecological life support system alternative (MELISSA) based on microorganisms and higher plants was studied. The MELISSA system consists of an interconnected loop of bioreactors to allow the recycling of the organic wastes generated in a closed environment. Conversion of ammonia into nitrates in such a system was improved by selection of microorganisms, immobilization techniques, reactor type and operation conditions. An axenic mixed culture of Nitrosomonas europaea and Nitrobacter winogradskyi, immobilized by surface attachment on polystyrene beads, was used for nitrification in packed‐bed reactors at both bench and pilot scale. Hydrodynamics, mass transfer and nitrification capacity of the reactors were analysed. Mixing and mass transfer rate were enhanced by recirculation of the liquid phase and aeration flow‐rate, achieving a liquid flow distribution close to a well‐mixed tank and without oxygen limitation for standard operational conditions of the nitrifying unit. Ammonium conversion ranged from 95 to 100% when the oxygen concentration was maintained above 80% of saturation. The maximum surface removal rates were measured as 1.91 gN‐NH4+ m?2 day?1 at pilot scale and 1.77 gN‐NH4+ m?2 day?1 at bench scale. Successful scale‐up of a packed‐bed bioreactor has been carried out. Good stability and reproducibility were observed for more than 400 days. Copyright © 2004 Society of Chemical Industry  相似文献   

8.
The capability of biological nutrient removal from wastewater of a novel laboratory‐scale twin fluidized‐bed bioreactor (TFBBR) was studied. The work showed approximately 96 % organic matter, 84 % nitrogen, and 12 % phosphorus removal efficiencies in the first three phases of the study at influent synthetic municipal wastewater (SMW) flow rates of 150, 190, and 240 L/d, with corresponding organic loading rates of 1.3, 1.7, and 2.3 kg COD m–3 d–1 and nitrogen loading rates of 0.14, 0.18 and 0.25 kg N m–3 d–1. The TFBBR effluent was characterized by <1.0 mg NH4‐N/L, <4.3 mg NO3‐N/L, <6 mg TN/L, <6 mg SBOD/L, and 6–10 mg VSS/L. For the three phases, biomass yields of 0.06, 0.066, and 0.071 g VSS/g COD were observed, respectively, which was a significant further reduction in yield compared to the liquid‐solid circulating fluidized‐bed bioreactor technology developed and patented by this research group, of 0.12–0.16 g VSS/g COD. The very low yield was due to a longer solid retention time of 72–108 d.  相似文献   

9.
The nitrification characteristics of fertilizer wastes were investigated in a biofilm system using a submerged aerated filter. The attachment of biomass on packing media was studied. Supplement of organic carbon in the form of glucose and yeast extract enhanced biofilm formation although the nitrifiers did not require organic carbon for growth. After an attachment period, continuous operation of the reactor at different loading rates and dissolved oxygen levels was investigated. The maximum achievable nitrification rate was strongly dependent on the dissolved oxygen. In the dissolved oxygen range of 3·2–3·5 mg dm−3, the maximum ammonia removal rate was about 0·17 kg NH4 N m−3 day−1. When the dissolved oxygen was increased to 4·9 mg dm−3, removal rates as high as 0·41 kg NH4 N m−3 day−1 could be obtained. Nitrite accumulation depended on the bulk nitrogen and dissolved oxygen concentrations.  相似文献   

10.
BACKGROUND: Landfill leachate is characterized by low biodegradable organic matter that presents difficulties for the complete biological nitrogen removal usually performed by conventional biological nitrification/denitrification processes. To achieve this, the anaerobic ammonium oxidation (anammox) process is a promising biological treatment. This paper presents an anammox start‐up and enrichment methodology for treating high nitrogen load wastewaters using sequencing batch reactor (SBR) technology. RESULTS: The methodology is based on the gradual increase of the nitrite‐to‐ammonium molar ratio in the influent (from 0.76 to 1.32 mole NO2?‐N mole?1NH4+‐N) and on the exponential increase of the nitrogen loading rate (NLR, from 0.01 to 1.60 kg N m?3 d?1). 60 days after start‐up, anammox organisms were identified by polymerase chain reaction (PCR) technique as Candidatus Brocadia anammoxidans. After one year of operation, NLR had reached a value of 1.60 kg N m?3 d?1 with a nitrogen (ammonium plus nitrite) removal efficiency of 99.7%. The anammox biomass activity was verified by nitrogen mass balances with 1.32 ± 0.05 mole of nitrite removed per mole of ammonium removed and 0.23 ± 0.05 mole of nitrate produced per mole of ammonium removed. Also, enrichment of anammox bacteria was quantified by fluorescence in situ hybridization (FISH) analysis as 85.0 ± 1.8%. CONCLUSIONS: This paper provides a methodology for the enrichment of the anammox biomass in a SBR to treat high nitrogen loaded wastewaters. Copyright © 2007 Society of Chemical Industry  相似文献   

11.
BACKGROUND: Considering biological nitrogen removal, the partial nitritation connected with the anaerobic ammonium oxidation (anammox) process is a promising alternative for nitrogen elimination at high loading rates. The objective of the present study was to evaluate the establishment and operation of a partial nitritation process in an airlift reactor with simultaneous removal of total organic carbon and suspended solids using swine wastewater. RESULTS: The partial nitritation reactor was inoculated with a nitrifying sludge at 2.1 gTSS L?1 and fed with an UASB reactor effluent. High organic carbon loading rates, above 2 kgTOC m?3 d?1 have been shown to be potential inhibitors of the partial nitritation process due to competition between autotrophic and heterotrophic bacteria. In this study, the partial nitritation process was established using undiluted swine wastewater, with HRT of 24 h, 1.84 mgO2 L?1 (SD = 0.41) DO, loading rate of 1.14 gTOC L?1 d?1 and 0.91 gN‐NH3 L?1 d?1 for more than 100 consecutive days. At the same time, the system proved to be an effective tool in TOC and TSS removal, reaching 84.9% (SD = 9.3) and 83.1% (SD = 0.1), respectively. CONCLUSION: This result enhances partial nitritation application as a technology for high load nitrogen converting, and allows the possibility of connection with anammox reactors. Copyright © 2012 Society of Chemical Industry  相似文献   

12.
A study of the effect of organic loading rate on the performance of anaerobic digestion of two‐phase olive mill solid residue (OMSR) was carried out in a laboratory‐scale completely stirred tank reactor. The reactor was operated at an influent substrate concentration of 162 g chemical oxygen demand (COD) dm?3. The organic loading rate (OLR) varied between 0.8 and 11.0 g COD dm?3 d?1. COD removal efficiency decreased from 97.0% to 82.6% when the OLR increased from 0.8 to 8.3 g COD dm?3 d?1. It was found that OLRs higher than 9.2 g COD dm?3 d?1 favoured process failure, decreasing pH, COD removal efficiency and methane production rates (QM). Empirical equations described the effect of OLR on the process stability and the effect of soluble organic matter concentration on the total volatile fatty acids (TVFA)/total alkalinity (TAlk) ratio (ρ). The results obtained demonstrated that rates of substrate uptake were correlated with concentration of biodegradable COD, through an equation of the Michaelis–Menten type. The kinetic equation obtained was used to simulate the anaerobic digestion process of this residue and to obtain the theoretical COD degradation rates in the reactor. The small deviations obtained (equal to or lower than 10%) between values calculated through the model and experimental values suggest that the proposed model predicts the behaviour of the reactor accurately. Copyright © 2007 Society of Chemical Industry  相似文献   

13.
The methanogenesis of black liquor from pulp and paper mill was achieved using immobilized cell technology in a laboratory‐scale two‐stage reactor system run continuously for 340 days. The optimum organic loading rate for the anaerobic treatment of black liquor was 8.0 kgm?3d?1 at which the % COD removal, biogas production and methane content were 55%, 11 dm3d?1 and 71%, respectively. Organic loading rates above 8.0 kgm?3d?1 were observed to be toxic to the methanogenic bacteria and resulted in decreased methane content, biogas and COD removal. The applicability of the system to the large‐scale processing and treatment of paper mill liquid waste is discussed. © 2001 Society of Chemical Industry  相似文献   

14.
The wastewater from a wood‐processing factory is characterized by a high COD, chlorides and nitrogen content. Various treatment processes were applied to treat this wastewater in pilot‐scale units. By applying one‐stage denitrification–activated sludge biological treatment it was not possible to remove nitrogen. Nitrification was inhibited by wastewater compounds. By applying a second stage of a nitrification biofilter it was possible to have a high degree of nitrification. The denitrification was complete. With biological methods the reduction of COD, and ‐N and ‐N concentrations to acceptable values was not achievable. Physical–Chemical methods as H2O2/UV, electrolysis and ozonation were used as post‐treatment of effluents from the biological system. Radical degradation, initiated by the powerful hydroxyl radicals which are generated from H2O2 by UV activation, is used for wastewater post‐treatment. The combination of H2O2/UV was not suitable for post‐treatment of this wastewater. With electrolysis, ‐N and COD removal can be complete. The total amount of ammonia and organic nitrogen converted to nitrate nitrogen for current density of 1.15 Adm?2 and energy consumption of 71.6 kWhm?3 was 0.35 gdm?3. Further biological denitrification is required for ‐N removal to permitted values. Energy consumption for the elimination of 1 kg COD was 40.4 kWh and 35.8 kWh for current densities of 0.7 Adm?2 and 1.15 Adm?2 respectively. The energy required to reach the limit value of COD equal to 150 mgdm?3 for current density of 1.15 Adm?2 was 71.6 kWhm?3. With ozonation, the COD removal can be complete. Further biological nitrification–denitrification is required to remove ‐N and ‐N to permitted values. At pH 7.0, in order to reach the limit value of COD equal to 150 mgdm?3, specific ozone dose was 6.0 g per g of COD removed and the total amount of ammonia and organic nitrogen converted to nitrate nitrogen was 0.25 gdm?3. The total equivalent energy required is estimated to be 75.0 kWhm?3. © 2001 Society of Chemical Industry  相似文献   

15.
A comparative kinetic study was carried out on the anaerobic digestion of two‐phase olive mill effluent (TPOME) using three 1‐dm3 volume stirred tank reactors, one with freely suspended biomass (control), and the other two with biomass supported on polyvinyl chloride (PVC) and bentonite (aluminium silicate), respectively. The reactors were batch fed at mesophilic temperature (35 °C) using volumes of TPOME of between 50 and 600 cm3, corresponding to chemical oxygen demand (COD) loadings in the range of 1.02–14.22 g, respectively. The process followed first‐order kinetics and the specific rate constants, K0, were calculated. The K0 values decreased considerably from 2.59 to 0.14 d?1, from 1.93 to 0.23 d?1 and from 1.52 to 0.17 d?1 for the reactors with suspended biomass (control) and biomass immobilized on PVC and bentonite, respectively, when the COD loadings increased from 1.02 to 14.22 g; this showed an inhibition phenomenon in the three reactors studied. The values of the critical inhibitory substrate concentration (S*), theoretical kinetic constant without inhibition (KA) and the inhibition coefficient or inhibitory parameter for each reactor (n) were determined using the Levenspiel model. Copyright © 2004 Society of Chemical Industry  相似文献   

16.
Aerobic treatment of refinery wastewater was carried out in a 200 dm3 gas–liquid–solid three‐phase flow airlift loop bioreactor, in which a biological membrane replaced the activated sludge. The influences of temperature, pH, gas–liquid ratio and hydraulic residence time on the reductions in chemical oxygen demand (COD) and NH4‐N were investigated and discussed. The optimum operation conditions were obtained as temperature of 25–35 °C, pH value of 7.0–8.0, gas–liquid ratio of 50 and hydraulic residence time of 4 h. The radial and axial positions had little influence on the local profiles of COD and NH4‐N. Under the optimum operating conditions, the effluent COD and NH4‐N were less than 100 mg dm?3 and 15 mg dm?3 respectively for more than 40 days, satisfying the national primary discharge standard of China (GB 8978‐1996). Copyright © 2005 Society of Chemical Industry  相似文献   

17.
Brine wastewater with a high ammonia content from an iodine processing plant (commonly called kansui in Japan) was treated by electrolysis. The system, which can be considered as an indirect electrolytic treatment process, generates chlorine at the anodes and initiates the formation of mixed oxidants like hypochlorous acid. The oxidants then act as agents for ammonia destruction. Laboratory‐scale experiments showed that high ammonia concentrations (as much as 200 mg dm?3) could be completely removed within a few minutes, and could be considered a good alternative for efficient ammonia removal from saline wastewaters. From laboratory‐scale experiments in the batch and continuous modes, the charge dose was analyzed and used as the operating and scale‐up factor. The value of the charge dose was not severely affected by changes in operating conditions such as electrode spacing and temperature. The charge dose from batch and continuous runs was found to be in the range of 23 C (mg NH4‐N removed)?1 to 29 C (mg NH4‐N removed)?1. Using the charge dose obtained from laboratory‐scale continuous electrolysis experiments as the scale‐up factor, a pilot‐scale reactor was designed, and the operating conditions were calculated. In the pilot‐scale reactor tests at different flow rates, the effluent ammonia concentrations were reasonably close to the calculated values predicted from the charge dose equation. Copyright © 2004 Society of Chemical Industry  相似文献   

18.
A 450 dm3 pilot‐scale upflow anaerobic sludge blanket (UASB) reactor was used for the treatment of a fermentation‐based pharmaceutical wastewater. The UASB reactor performed well up to an organic loading rate (OLR) of 10.7 kg COD m?3 d?1 at which point 94% COD removal efficiency was achieved. This high treatment efficiency did not continue, however and the UASB reactor was then operated at lower OLRs for the remainder of the study. Specific methanogenic activity (SMA) tests were, therefore, carried out to determine the potential loading capacity of the UASB reactor. For this purpose, the SMA tests were carried out at four different initial acetate concentrations, namely 500 mg dm?3, 1000 mg dm?3, 1500 mg dm?3 and 2000 mg dm?3 so that substrate limitation could not occur. The results showed that the sludge sample taken from the UASB reactor (OLR of 6.1 kg COD m?3 d?1) had a potential acetoclastic methane production (PMP) rate of 72 cm3 CH4 g?1 VSS d?1. When the PMP rate was compared with the actual methane production rate (AMP) of 67 cm3 CH4 g?1 VSS d?1 obtained from the UASB reactor, the AMP/PMP ratio was found to be 0.94 which ensured that the UASB reactor was operated using its maximum potential acetoclastic methanogenic capacity. In order to achieve higher OLRs with desired COD removal efficiencies it was recommended that the UASB reactor should be loaded with suitable OLRs pre‐determined by SMA tests. © 2001 Society of Chemical Industry  相似文献   

19.
Tannery wastewater was treated by an electrochemical oxidation method using Ti/Pt, Ti/PbO2 and Ti/MnO2 anodes and a Ti cathode in a two‐electrode stirred batch reactor. The changes in colour concentration, chemical oxygen demand (COD), ammonia (NH4+), sulfide and total chromium have been determined as a function of treatment time and applied current density. Gas chromatography–mass spectrometry (GC–MS) analysis, performed on the wastewater samples before and after treatment, as well as on foam samples, is reported. Anode efficiency, rate constants and energy consumption were estimated and discussed. The efficiency of Ti/Pt was 0.802 kgCOD h?1 A?1m?2 and 0.270 kgNH4+ h?1 A?1m?2, and the energy consumption was 5.77 kWh kg?1 COD and 16.63 kWh kg?1 of NH4+. The order of efficiency of anodes was found to be Ti/Pt ? Ti/PbO2 > Ti/MnO2. The results indicate that the electro‐oxidation method could be used for effective oxidation of tannery wastewater and a final effluent with substantially reduced pollution load can be obtained. © 2001 Society of Chemical Industry  相似文献   

20.
The upflow anaerobic sludge blanket (UASB) has been used successfully to treat a variety of industrial wastewaters. It offers a high degree of organics removal, low sludge production and low energy consumption, along with energy production in the form of biogas. However, two major drawbacks are its long start‐up period and deficiency of active biogranules for proper functioning of the process. In this study, the influence of a coagulant polymer on start‐up, sludge granulation and the associated reactor performance was evaluated in four laboratory‐scale UASB reactors. A control reactor (R1) was operated without added polymer, while the other three reactors, designated R2, R3 and R4, were operated with polymer concentrations of 5 mg dm?3, 10 mg dm?3 and 20 mg dm?3, respectively. Adding the polymer at a concentration of 20 mg dm?3 markedly reduced the start‐up time. The time required to reach stable treatment at an organic loading rate (OLR) of 4.8 g COD dm?3 d?1 was reduced by more than 36% (R4) as compared with both R1 and R3, and by 46% as compared with R2. R4 was able to handle an OLR of 16 g COD dm?3 d?1 after 93 days of operation, while R1, R2 and R3 achieved the same loading rate only after 116, 116 and 109 days respectively. Compared with the control reactor, the start‐up time of R4 was shortened by about 20% at this OLR. Granule characterization indicated that the granules developed in R4 with 20 mg dm?3 polymer exhibited the best settleability and methanogenic activity at all OLRs. The organic loading capacities of the reactors were also increased by the addition of polymer. The maximum organic loading of the control reactor (R1) without added polymer was 19.2 g COD dm?3 d?1, while the three polymer‐assisted reactors attained a marked increase in organic loading of 25.6 g COD dm?3 d?1. Adding the cationic polymer could result in shortening of start‐up time and enhancement of granulation, which may in turn lead to improvement in the efficiency of organics removal and loading capacity of the UASB system. Copyright © 2004 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号