首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Distortion of power transmission parts after heat treatment is influenced by each step of the process chain, ranging from material production to hard-machining. However, an experimental analysis for each production step in the manufacture of bearing rings has shown that distortion is significantly influenced by turning before heat treatment. Elastic ring deformation caused by fixing the workpiece in the chuck leads to a variation of the depth of cut and polygonal form deviations occur after machining. In addition the cutting process induces locally varying residual stresses which also contribute to dimensional and form deviations of machined rings. In this paper results from experimental investigations of the principle physical causes for the distortion of bearing rings are presented and discussed. Finally, strategies for the minimization of distortion are derived.  相似文献   

2.
Machining induced residual stress in structural aluminum parts   总被引:1,自引:0,他引:1  
Machining operations of aluminum structural parts are typically carried out under high feeds and high cutting speeds. Under these conditions, high thermomechanical loads are exerted on the workpiece, which may result in changes in the subsurface material. Residual stresses can be one of the machining induced changes and can lead to considerable rejection rates caused by part distortion. Due to their significant economic importance, it is essential to understand the influence of the machining process on the residual stresses in aluminum. This paper presents the influence of the machining parameters as well as the cutting edge geometry on residual stress of workpieces made out of a forged aluminum alloy.  相似文献   

3.
The surface integrity of machined components is defined by several characteristics, of which residual stress is extremely important. Residual stress is known to have an effect on critical mechanical properties such as fatigue life, corrosion cracking resistance, and dimensional tolerance of machined components. Among the factors that affect residual stress in machined parts are cutting parameters and tool geometry. This paper presents a method of modeling residual stress for hone-edge cutting tools in turning. The model utilizes analytical cutting force models in conjunction with an approximate algorithm for elastic–plastic rolling/sliding contact. Oxley’s cutting force model is coupled with a slip line model proposed by Waldorf to estimate the cutting forces, which are in turn used to estimate the stress distribution between the tool and the workpiece. A rolling/sliding contact model, which captures kinematic hardening, is used to predict the machining residual stresses. Additionally, a moving heat source model is applied to determine the temperature rise in the workpiece due to the cutting forces. The model predictions are compared with experimental data for the turning of AISI 52100. Force predictions compare well with experimental results. Similarly, the predicted residual stress distributions correlate well with the measured residual stresses in terms of magnitude of stresses and depth of penetration.  相似文献   

4.
In this paper, an experimental study of influence of machining by turning and ball burnishing on the surface morphology, structure and residual stress distribution of cold spray 17-4 PH stainless steel deposits is provided. It is shown that cold spray deposits could be machined by turning under parameters closed to turning of bulk 17-4 PH stainless steel. Ball burnishing process permits to decrease surface roughness. Cross-sectional observation revealed that the turning and ball burnishing process allowed microstructure changes in the coating near-surface zone. In particular, significant particle deformation and particle boundary fragmentation is observed. Measurements of residual stresses showed that residual stresses in the as-spray deposit are compressive. After machining by turning, tensile residual stresses in the near-surface zone were induced. Further surface finishing of turned coating by ball burnishing allowed the establishment of the compressive residual stresses in the coating.  相似文献   

5.
Through-section residual stresses in an asymmetric, thin-walled tapered bearing component were non-destructively studied via neutron diffraction after soft machining, heat treatment and hard turning. Two-dimensional area maps revealed non-uniform distributions of stress fields in both the thinnest and thickest sections of the component, indicating that the entire processing sequence plays a vital role — not only in distortion, but in the final stress state as well. A computational model was developed to further understand the extent of the distortion induced in bearing components as a result of process variables in the manufacturing sequence.  相似文献   

6.
通过旋转试验和有限元分析介绍了工件在切削加工过程中产生的畸变情况,分析了工件的装夹方式、切削速度、切削深度和进刀量对100Cr6钢环圆度的影响。通过去应力退火释放冷加工诱发的残余应力后工件的圆度与切削参数有关。另外测试了被试验环的表面残余应力,其表面残余应力与装夹方式有关。将测量的装夹力作为计算参数输入,通过有限元分析方法测试了装夹方式对工件变形的影响。协同测量结果示出了装夹方式影响工件变形的一个主要因素,表面残余应力与工件的径向变形有关,最大的拉伸应力位于夹口位置。旋转切削试验结果表明,提高切削速度圆度会稍有增加;随着切削深度的加大,圆度呈下降趋势,尽管切削力增加了;进给量的增加会导致更高的切削力,因此圆度值也增加;常规的去应力退火可使被加工环的圆度值增加。  相似文献   

7.
从锻造质量、热处理内应力、机械加工精度及其产生的残余应力等方面,分析影响环形齿轮渗碳淬火畸变的因素,阐述控制热处理畸变的几项措施,采用将加工精度提高半级、尽可能消除机械加工中产生的残余应力、使用专用夹具并优化相关的热处理工艺参数等。结果显示,环形齿轮的合格率从不到50%上升到80%以上,取得了明显的效果。  相似文献   

8.
Critical issues in machining of difficult-to-cut materials are often associated with short tool-life and poor surface integrity, where the resulting tensile residual stresses on the machined surface significantly affect the component's fatigue life. This study presents the influence of cutting process parameters on machining performance and surface integrity generated during dry turning of Inconel 718 and austenitic stainless steel AISI 316L with coated and uncoated carbide tools. A three-dimensional Finite Element Model was also developed and the predicted results were compared with those measured.  相似文献   

9.
Residual stresses in the surface layer exert a significant impact on functional aspects of machined parts. Their type and value depend on the workpiece and tool material properties, cutting parameters and cooling and lubrication conditions in the tool-chip-machined surface interface. As the effects of material properties and cutting parameters have been widely studied, the influence of cooling and lubrication conditions, especially minimum quantity lubrication (MQL) on the surface layer residual stresses and the relationships between them have not been investigated. In this paper the effects of dry, MQL cutting and cutting with emulsion conditions together with cutting parameters on residual stresses after turning AISI 316L steel were investigated. X-ray diffraction method was used for measuring superficial residual stresses in the cutting (hoop) and feed (axial) directions. Tensile residual stresses were detected in both directions and the values in the cutting direction turned out to be higher than in the feed direction. The effects of cooling and lubrication conditions largely depend on the selected cutting parameters, whose influence is linked to the cutting zone cooling and lubrication mode. Elaborated regression functions allow calculation and optimization of residual stresses in turning AISI 316L steel, depending on cooling and lubrication conditions as well as cutting parameters.  相似文献   

10.
The aim of this investigation was to determine the effect of different production operations and parameters on residual stress level in double-layer cast rolls. Using a hole-drilling method, residual stress depth distribution in surface layer was measured around and along the body of the double-layer cast roll after casting, heat treatment, turning and grinding. Furthermore, using different turning and grinding parameters (speed, feed), and heat treatment parameters (temperature, time), influence of these parameters on residual stress level and distribution was determined.Results of the investigation show that the conditions in the casting pit have an influence on the residual stress field generated in double-layer cast rolls, with surfaces exposed to faster cooling rates in general showing higher residual stress values. Very critical phase in rolls production is coarse grinding, which if not carried out properly will generate very high tensile stresses in the roll surface and cause surface cracking or even roll fracture. Heat treatment on the other hand results in uniform compressive residual stress field in the roll's surface. However, reduction in tempering time and especially increase in hardening temperature lead to increased residual stress level in the roll surface. Final machining of the roll surface further influences residual stress level in the roll. Increase in turning speed of up to 40% results in compressive residual stress increase of up to 60%, while less than 30% increase in feeding rate gives almost 100% increase in residual stress level.  相似文献   

11.
Surface integrity in finish hard turning of case-hardened steels   总被引:1,自引:0,他引:1  
Highly stressed steel components, e.g., gears and bearing parts, are appropriate applications for hard turning. Therefore, the process effects on significant engineering properties of work materials have to be carefully analyzed. Roughness, residual stresses, and white layers as parts of surface integrity, are functions of the machining parameters and of the cuttability of the cutting edge, i.e. of the tool wear.The aim of this work was to study the influence of feed rate, cutting speed, and tool wear on the effects induced by hard turning on case-hardened 27MnCr5 gear conebrakes and to point out the technical limitations in mass production.  相似文献   

12.
Dry machining of Inconel 718, workpiece surface integrity   总被引:1,自引:0,他引:1  
In the machining of Inconel 718, nickel based heat resistant superalloy and classified difficult-to-cut material, the consumption of cooling lubricant is very important. To reduce the costs of production and to make the processes environmentally safe, the goal is to move toward dry cutting by eliminating cutting fluids. This goal can be achieved by using coated carbide tool and by increasing cutting speed.The present paper firstly reviews the main works on surface integrity and especially residual stresses when machining Inconel 718 superalloy. It focuses then on the effect of dry machining on surface integrity. Wet and dry turning tests were performed at various cutting speeds, with semi-finishing conditions (0.5 mm depth of cut and 0.1 mm/rev feed rate) and using a coated carbide tool. For each cutting test, cutting force was measured, machined surface was observed, and residual stress profiles were determined. An optimal cutting speed of 60 m/min was determined, and additional measurements and observations were performed. Microhardness increment and the microstructure alteration beneath the machined surface were analysed. It is demonstrated that dry machining with a coated carbide tool leads to potentially acceptable surface quality with residual stresses and microhardness values in the machining affected zone of the same order than those obtained in wet conditions when using the optimised cutting speed value; in addition, no severe microstructure alteration was depicted.  相似文献   

13.
Workpiece and tool are subjected to severe mechanical and thermal loads when turning. These loads cause thermal expansions and mechanically induced deflections of the tool and the workpiece. Such deformations induce deviations from the nominal workpiece geometry. In order to decrease these deviations, the cutting condition needs to be optimized prior to actual machining. In this paper, the accuracy of machining when dry turning aluminum is analyzed via experiments and finite element simulations. For this purpose, seven characteristic values were used: the forces, the deflection of the workpiece, the quantity of heat in the workpiece, the temperature distribution in the workpiece, the temperature of the tool, the temperature of the tool holder, and the actual dimension of the workpiece after turning. These experimentally determined results serve in addition as boundary conditions for a 3D finite element model of the workpiece, which calculates the deformations of the workpiece. The continuous removal of material affecting the temperature distribution in the workpiece is considered. The actual dimensions of the workpiece after turning revealed a remarkable influence of the cutting condition used on the accuracy of machining. Differences of up to 116 μm regarding the deviation from the nominal workpiece diameter of 30 mm were observed. The analysis of the machining accuracy reveals that particularly the use of both high cutting speeds and feeds enhances the accuracy of machining when dry turning aluminum.  相似文献   

14.
This study deals with the effect of High-Pressure Water Jet Assisted Turning (HPWJAT) of austenitic stainless steels on chip shape and residual stresses. The machining of the austenitic stainless steels represents several difficulties. Recently, research has shown that the introduction of a high-pressure water jet into the gap between the tool and the chip interface is a very satisfactory method for machining applications. In this article, the effect of a high-pressure water jet, directed into the tool-chip interface, on chip shapes breakage and surface integrity in face turning operations of AISI 316L steel has been investigated. Tests have been carried out with a standard cutting tool. The cutting speeds used were 80 and 150 m/min, with a constant feed rate of 0.1 mm/rev and a constant cutting depth of 1 mm. Three jet pressures were used: 20, 50 and 80 MPa. Residual stress profiles have been analysed using the X-ray diffraction method in both longitudinal and transversal directions. The results show that jet pressure and cutting parameters influence the residual stresses and the chip shapes. Using a high-pressure jet, it is possible to create a well fragmented chip in contrast to the continuous chip formed using dry turning. It is also possible to control the chip shape and increase tool life. When the jet pressure is increased the residual stress at the surface decreases; however it is increased by an increase in cutting speed. It can be concluded that surface residual stresses can be reduced by the introduction of a high-pressure water jet.  相似文献   

15.
切削加工引起的金属零件的表面残余应力,其性质和大小对零件的服役性能产生很重要的影响。在测量车削加工Ti6Al4V薄壁管件引起的表面残余过程中,由于边缘效应的存在,使得零件的长度对测量精度有严重的影响。由于管件的壁厚很薄,当去除一应力层时会对剩余部分的残余应力的重新分布产生重要的影响,因此必须对剥层后X射线法测得的应力值进行修正补偿才能得到其初始应力值。传统的修正方法其计算比较复杂,对零件和应力都有特别的要求,而且在某些情况下其修正精度还达不到要求。同时考虑测量精度、测量可行性以及节约材料诸多方面的问题,本文运用有限元验证的方法确定零件合适的长度。同时本文运用精度较高的基于有限元分析的修正方法结合X射线法测量Ti6Al4V管件车削加工引起的表面残余应力,分析不同切削参数以及退火处理对表面残余应力的影响。结果显示:切削速度、进给量以及切削深度在指定范围内增大时会导致表面切削和进给方向的压应力增大,退火处理会使得表面两个方向的残余应力减小将近85%。  相似文献   

16.
The researchers have worked on many facets of machining of hardened steel using different tool materials and came up with their own recommendations. Researchers have tried to investigate the effects of cutting parameters, tool materials, different coatings and tool geometry on different machinability aspects like, the tool life, surface roughness, cutting forces, chip morphology, residual stresses and the tool–chip interface temperature under dry and/or semi-dry and/or flood cooling environment during machining of hardened steels while many of them have ventured to characterize the wear phenomenon. Good amount of research has been performed on an analytical and/or numerical and/or empirical modeling of the cutting forces, tool–chip interface temperature, and tool wear under orthogonal/oblique cutting conditions during machining of hardened steels. This paper presents a comprehensive literature review on machining of hardened steels using coated tools, studies related to hard turning, different cooling methods and attempts made so far to model machining performance(s) so as to give proper attention to the various researcher works.  相似文献   

17.
微量润滑(MQL)切削是一种绿色加工技术。为了解MQL系统对加工残余应力影响,通过45钢车削正交试验,研究MQL系统的空气压力、润滑液用量、喷射距离、油雾温度对加工残余应力的影响。试验结果表明:油雾温度对加工残余应力的影响最大,润滑液用量也有一定的影响,空气压力和喷射距离的影响不显著;油雾温度降低,残余(拉)应力变小;润滑液用量增加,残余(拉)应力变小;MQL系统对加工残余应力的影响机制是通过改变油雾的冷却能力和渗透性,改变残余应力热力耦中的热效应。  相似文献   

18.
The growing demands for high productivity of machining need use of high cutting velocity and feed rate. Such machining inherently produces high cutting temperature, which not only reduces tool life but also impairs the product quality. Application of cutting fluids changes the performance of machining operations because of their lubrication, cooling, and chip flushing functions. But the conventional cutting fluids are not that effective in such high production machining, particularly in continuous cutting of materials likes steels. Minimum quantity lubrication (MQL) presents itself as a viable alternative for turning with respect to tool wear, heat dissipation, and machined surface quality. This study compares the mechanical performance of MQL to completely dry lubrication for the turning of AISI-1040 steel based on experimental measurement of cutting temperature, chip reduction coefficient, cutting forces, tool wears, surface finish, and dimensional deviation. Results indicated that the use of near dry lubrication leads to lower cutting temperature and cutting force, favorable chip–tool interaction, reduced tool wears, surface roughness, and dimensional deviation.  相似文献   

19.
The selection of optimum machining parameters and tool geometry for difficult to cut materials used in aerospace applications is usually controlled by the quality and integrity of the surface produced, the burr formation and the part distortion. In this paper, a finite element model is developed to simulate the effects of tool flank wear and chip formation on residual stress when orthogonal cutting Ti-6AI-4V. A crack propagation module is also developed and incorporated into the finite element solver to accurately simulate the segmental chips produced during machining of titanium. The predicted results emphasize the importance of modelling the chip formation mechanism and tool wear correctly because of their effect on the cutting forces and temperature field. This subsequently influences the magnitude and distributions of the residual stress. Good correlation was obtained between measured and predicted residual stress distribution.  相似文献   

20.
In machining of ring shaped components, the workpiece is deformed by the clamping forces of the chuck. This elastic deformation generates shape deviations in soft turning. Moreover, the machining process generates locally varying residual stresses which contribute to shape deviation of the workpiece. Hence, in machining of thin-walled bearing rings hexagonal out‐of‐roundness up to 200 μm occur. In order to minimize the shape deviations, a long stroke Fast Tool Servo (FTS) for controlling the depth of cut was developed. The applied FTS differs from other published FTS systems in the guidance design. The moving tool holder is suspended to the FTS frame by flexure joints instead of using a linear guidance. The flexure joints provide a low stiffness in moving direction and high stiffness in orthogonal directions. The high stiffness in cutting force direction is essential for a real time reduction of shape deviations in soft turning. In this paper, results of an experimental investigation for the reduction of the shape deviation by adapted non circular machining are presented, using the developed FTS. Based on the results, the influence of the cutting forces on part accuracy is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号