首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
基于多谐波双向牵引技术的微波功率放大器设计   总被引:2,自引:0,他引:2       下载免费PDF全文
功率放大器的输出功率和附加效率是设计的重点和难点,而功放设计通常采用的是负载牵引技术,强调了负载阻抗对电路输出功率和效率的影响,却常常忽略了源阻抗对它的影响.文中结合实例,介绍了基于谐波平衡分析的多谐波双向牵引优化技术的原理和实现方法.优化源和负载各谐波阻抗,仿真和实测结果表明:多谐波双向牵引优化技术能够在获得功率放大器所需的最大输出功率和最佳附加效率之间取得折中和平衡,从而满足工程设计指标要求.  相似文献   

2.
射频功率放大器是无线通信系统中的重要组成部分,其工作效率直接影响着整个系统的耗能、稳定度和对电源散热装置的要求,提高射频功率放大器的效率,能够节约能源,降低功耗,因此实现射频功率放大器的高效率工作是目前射频功率放大器领域的热点问题之一。本文选用Freescale晶体管MW6S004N,借助ADS2013软件,采用负载牵引技术和源牵引技术得到最佳负载阻抗和最佳源阻抗,并用Smith圆图进行电路的匹配设计,对射频功率放大器进行了仿真和优化。仿真结果表明,在频率为1960MHz的L波段,输入功率为21d Bm时,射频功率放大器的输出功率大于36d Bm,功率附加效率大于50%。这种高效率射频功率放大器适用于WCDMA基站,对基站中高效率功率放大器的设计有着重要的参考价值。  相似文献   

3.
李贺 《电子与封装》2019,19(10):44-48
论述了位于不同层面的缺陷地结构(DGS)应用于功率放大器的设计。一种是在微带线的两侧接地面刻蚀DGS,另一种是在微带线的背面接地刻蚀DGS,通过ADS Momentum仿真确定DGS的尺寸,并将这两种DGS应用到一款4 W功率放大器中进行仿真和实际制板测试。实测结果显示在微带线两侧接地面刻蚀DGS的功率放大器在输出功率为34.76 d Bm时改善二次谐波13 d B,且输出功率和功率附加效率(PAE)优于不刻蚀DGS的功率放大器。在微带线背面接地面刻蚀DGS的功率放大器在输出功率为34.21 d Bm时改善二次谐波28 d B,由于DGS结构改变了正面微带线的特征阻抗,所以输出功率和功率附加效率低于不刻蚀DGS的功率放大器。  相似文献   

4.
方升  彭习文  谢泽明 《电子学报》2000,48(9):1864-1867
为了实现高效率的射频滤波功率放大器(filtering power amplifier),将基于悬置线的截线加载谐振器(stub-loaded resonator)带通滤波器的输入阻抗直接匹配到射频功放管CGH40010F的最佳基波阻抗和谐波阻抗,实现射频功率放大器与滤波器的联合设计,使滤波器同时实现了滤波、阻抗匹配和谐波控制的功能,避免了额外的输出匹配结构,实现了结构紧凑、具有滤波功能的高效率谐波控制型射频功放.实测结果表明在中心频率2.45GHz处,其输出功率约为40dBm,最大电源附加效率(power added efficiency)为76.9%,同时具有良好的滤波特性.  相似文献   

5.
刘超  陈钟荣 《半导体技术》2015,40(9):658-662
E类功率放大器(PA)具有设计简单和高效率的优点,然而频率较高时功率管的寄生输出电容大于E类功率放大器所需的电容,这个寄生输出电容导致E类功率放大器的效率降低.提出一种高频E类功率放大器的设计方法,使用负载牵引得到考虑寄生输出电容后的最佳负载阻抗,再结合谐波阻抗控制方法设计E类功率放大器.采用飞思卡尔的横向扩散金属氧化物半导体(LDMOS)功率管MRF21010设计了一款工作在930~960 MHz的E类功率放大器.测试数据表明,该功率放大器的输出功率为36.8 dBm (4.79W),具有79.4%的功率附加效率.  相似文献   

6.
为了有效实现高谐波抑制并提高功率附加效率,提出了一种适用于4G-LTE无线通信系统的高效F类功率放大器。该功率放大器使用了低电压p-HEMT晶体管和小型微带抑制单元,能够在低射频输入功率下产生n次谐波抑制和较高的功率附加效率(power added efficiency,PAE)。采用谐波平衡法对提出的功率放大器进行了仿真分析,并对其进行了实际制造。通过实际测量对仿真结果进行了验证。测量结果显示,提出功率放大器的工作频率为1.8 GHz,带宽为100 MHz,平均PAE为76.9%,且具有2V的极低漏极电压。射频输入功率范围分别为0-12 dBm时,最大输出功率和增益分别为23.4和17.5 dBm。  相似文献   

7.
提出了一种新型提高射频功率放大器功率附加效率(PAE)的电路技术,该方法通过滤除二次谐波分量、反射叠加三次谐波分量以提高电路PAE,分析了相位匹配的机制及其影响因素.基于该技术设计了一款功率放大器,仿真结果表明:工作频率为918 MHz时,该功放的P1dB达到了30.05 dBm,功率附加效率达到了58.75%,较普通...  相似文献   

8.
为了在功率回退时满足功率放大器对高效率的要求,提出了一种采用阻抗缓冲匹配技术的Doherty功率放大器。通过负载牵引仿真,得到功放管的最佳基波和谐波负载阻抗。在此基础上,采用一种谐波控制阻抗匹配网络设计方法来设计主/辅路放大器的输出匹配网络,实现了高回退效率。为了验证该方法的有效性,设计并实现了一个1.635 GHz高效率Doherty功率放大器。测试结果表明,该放大器的饱和功率大于44 dBm,峰值效率为75%,6 dB功率回退时的效率为70%。该方法能有效提高Doherty功率放大器的回退效率。  相似文献   

9.
提出了一款4G 频段全覆盖高输出功率高效率功率放大器。设计采用的是Cree 公司提供的GaN HEMT 晶体管CGH40025F。基于F 类功率放大器的设计理论,通过对晶体管的输入输出端均采用谐波控制网络,并将渐变式阻抗匹配这种宽带匹配方法应用到输入输出端的基波匹配当中。在实现二次谐波阻抗匹配至低阻抗区,三次谐波阻抗匹配至高阻抗区的同时基波阻抗被匹配至50Ω附近,从而有效提高了功率放大器的输出功率、效率和带宽。最终的测试结果表明在1. 7 ~ 2. 7 GHz 频率范围内,漏极效率维持在62. 55% ~ 76%,输出功率在20 ~ 41W,增益在10 dB 以上。仿真与实测结果基本一致。  相似文献   

10.
徐雷钧  孟少伟  白雪 《微电子学》2022,52(6):942-947
针对硅基毫米波功率放大器存在的饱和输出功率较低、增益不足和效率不高的问题,基于TSMC 40nm CMOS工艺,设计了一款工作在28GHz的高效率和高增益连续F类功率放大器。提出的功率放大器由驱动级和功率级组成。针对功率级设计了一款基于变压器的谐波控制网络来实现功率合成和谐波控制,有效地提高了功率放大器的饱和输出功率和功率附加效率。采用PMOS管电容抵消功率级的栅源电容,进一步提高线性度和增益。电路后仿真结果表明,设计的功率放大器在饱和输出功率为20.5dBm处的峰值功率附加效率54%,1dB压缩点为19dBm,功率增益为27dB,在24GHz~32GHz频率处的功率附加效率大于40%。  相似文献   

11.
论文首先仿真设计了一款射频功率放大器,接着构建了该射频功率放大器热特性分析模型,并采用有限元方法分析了该射频功率放大器热特性,然后研究了增加过孔以及不同覆铜层厚度、环境温度、耗散功率四种情况对射频功率放大器的温度、热应力和热形变的影响,最后基于上述分析结论加工制作并测试了该款射频功率放大器.在3.3GHz~3.6GHz范围内其输出功率不低于39.2dBm,增益不低于12dB,功率附加效率为62.6%~69%;在环境温度为21℃下,运用红外温度扫描仪进行测试,该款射频功率放大器最高温度达到90.0℃,测试结果与仿真分析结果相近.论文的研究为未来射频功率放大器的设计及制作提供了重要指导.  相似文献   

12.
为了进一步提高射频功放的输出能力,基于GaN HEMT功率器件,采用平衡式结构设计了一款工作频率为3.3 GHz 3.6 GHz的高效率逆F类Doherty结构射频功放。参照功放管的寄生参数等效电路网络,为获得逆F类功放理想的开关特性,设计了具有寄生参数补偿作用的谐波控制网络来抑制功放输出端的二次、三次谐波,同时结合Doherty功放结构特点,使其在6 dB功率回退的情况下仍具有较高的输出效率。仿真后,可得到其在3.3 GHz^3.6 GHz工作频带内的输出功率在40.4 dBm^41.8 dBm内,PAE为66%~77%,最大DE达到82.6%,功率回退6 dB处,功放的DE仍在69%左右,增益平坦度约为±1.5 dB。  相似文献   

13.
Although the conventional Class B approach to RF amplifier design yields high output power and reasonable collector efficiency (78.5 percent at maximum output power), neither the power nor the efficiency are optimum, and both are dependent on RF drive level. This paper presents an analysis of appropriately selected collector voltage and current waveforms which determine the load impedance at the fundamental and harmonically related frequencies; these conditions define the ClassB "optimum efficiency" case with 100 percent collector efficiency and 1.27 times the conventional Class B value of output power. If the RF drive level is increased, and the collector voltage and current waveforms are appropriately selected so that the amplifier is overdriven, a different load impedance is determined; these conditions define the "optimum power" case with 1.46 times the conventional Class B value of output power and 88 percent collector efficiency. The "optimum power" case has the added advantage that the output power and collector efficiency are essentially constant over a predetermined range of drive level. Finally, the theory is verified by the construction and testing of a UHF power amplifier having a power output of 46 watts and an over-all dc to RF conversion efficiency of 65 percent with a 1 dB for 10.5- dB insensitivity of output power to RF drive.  相似文献   

14.
基于ADS的功率放大器设计与仿真   总被引:2,自引:1,他引:1  
为了使射频功率放大器输出一定的功率给负载,采用一种负载牵引和源牵引相结合的方法进行功率放大器的设计。通过ADS软件对其稳定性、输入/输出匹配、输出功率进行仿真,并给出清晰的设计步骤。最后结合设计方法给出一个中心频率为2.6GHz、输出功率为6.5W的功率放大器的设计及优化实例和仿真结果。仿真结果表明,这种方法是可行的,满足设计的要求,并且对功放的设计有着重要的参考价值。  相似文献   

15.
近年来60 GHz附近的一个连续频段可以自由使用,这为短距离的无线个域网等高速率传输的应用提供了条件.设计了一个工作在60 GHz的CMOS功率放大器.采用台积电0.13μmRF-CMOS工艺设计制造,芯片面积为0.35mm × 0.4 mm,最大线性输出功率为11 dBm,增益为9.7 dB,漏极增加效率(η_(PAE))为9.1%.达到应用在通信距离为10 m的无线个域网(WPAN)射频电路中的要求.设计中采用了厚栅氧化层工艺器件和Load-Pull方法设计最优化输出阻抗z_(opt),以提高输出功率.该方法能较大提高CMOS功率放大器的输出功率,可以应用到各种CMOS功率放大器设计中.  相似文献   

16.
为了改善传统F类射频功放LC输出匹配电路二阶阻抗不为零而造成的效率损害,提出了一种更加理想的新型LC输出匹配电路.根据双极型功放的特点,提出的新型LC输入匹配电路可以进一步提高输出效率.通过在Jazz SiGe BiCMOS 0.35μm工艺上的电路仿真设计表明,效率可以由63%增加到73%.工作在2.4GHz频段上的此F类功率放大器可以适用于采用非线性调制的射频发送端.  相似文献   

17.
为满足5G通信中多标准、多模式系统对功率放大器的需求,提出了一种新型的可重构双波段匹配电路结构.首先,在输出匹配网络中加入分布式PIN开关,通过开关的闭合与断开实现两个双波段输出匹配电路的良好匹配;然后,基于带通滤波器理论设计的宽带输入匹配网络,能够实现1.5~2.5 GHz频段内的良好匹配.为验证方法的有效性,采用C...  相似文献   

18.
基于0.13μm SiGe HBT工艺,设计应用于无线局域网(WLAN)802.11b/g频段范围内的高增益射频功率放大器.该功放工作在AB类,由三级放大电路级联构成,并带有温度补偿和线性化的偏置电路.仿真结果显示:功率增益高达30dB,1dB压缩点输出功率为24dBm,电路的S参数S11在1.5~4GHz大的频率范围内均小于-17dB,S21大于30dB,输出匹配S22小于-10dB,S12小于-90dB.最高效率可达42.7%,1dB压缩点效率为37%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号