共查询到18条相似文献,搜索用时 72 毫秒
1.
3D点云由于其无序性以及缺少拓扑信息使得点云的分类与分割仍具有挑战性.针对上述问题,我们设计了一种基于自注意力机制的3D点云分类算法,可学习点云的特征信息,用于目标分类与分割.首先,设计适用于点云的自注意力模块,用于点云的特征提取.通过构建领域图来加强输入嵌入,使用自注意力机制进行局部特征的提取与聚合.最后,通过多层感知机以及解码器-编码器的方式将局部特征进行结合,实现3D点云的分类与分割.该方法考虑了输入嵌入时单个点在点云中的局部语境信息,构建局部长距离下的网络结构,最终得到的结果更具区分度.在ShapeNetPart、RoofN3D等数据集上的实验证实所提方法的分类与分割性能较优. 相似文献
2.
在视频动作识别任务中,无论是在视频的空间维度还是时序维度,如何充分学习和利用特征之间相关性,对最终识别性能的影响非常大。卷积操作通过计算邻域内特征点之间的相关性获得局部特征,而自注意力机制通过所有特征点之间的信息交互学习到全局信息。单个卷积层不具备在全局视角上学习特征相关性的能力,即使是重复堆叠多层也只是获得了若干个更大的感受野。自注意力层虽然具有全局视角,但其关注的核心仅是不同特征点所表达的内容联系,忽略了局部的位置特性。为了解决以上问题,提出了一种时空卷积注意力网络用于动作识别。时空卷积注意力网络由空间卷积注意力网络和时序卷积注意力网络共同组成。空间卷积注意力网络使用自注意力方法捕捉空间维度的表观特征联系,用一维卷积提取动态信息。时序卷积注意力网络通过自注意力方法来获取时序维度上帧级特征间的关联信息,用2D卷积学习空间特征。时空卷积注意力网络集成两种网络的共同测试结果来提升模型识别性能。在HMDB51数据集上进行实验,以ResNet50为基线,引入时空卷积注意力模块后,神经网络的识别准确率在空间流和时序流上分别提升了6.25和5.13个百分点。与当前先进方法进行比较,时空卷积注意力... 相似文献
3.
传统人体动作识别算法无法充分利用视频中人体动作的时空信息,且识别准确率较低。提出一种新的三维密集卷积网络人体动作识别方法。将双流网络作为基本框架,在空间网络中运用添加注意力机制的三维密集网络提取视频中动作的表观信息特征,结合时间网络对连续视频序列运动光流的运动信息进行特征提取,经过时空特征和分类层的融合后得到最终的动作识别结果。同时为更准确地提取特征并对时空网络之间的相互作用进行建模,在双流网络之间加入跨流连接对时空网络进行卷积层的特征融合。在UCF101和HMDB51数据集上的实验结果表明,该模型识别准确率分别为94.52%和69.64%,能够充分利用视频中的时空信息,并提取运动的关键信息。 相似文献
4.
5.
6.
水电枢纽在长期运行过程中容易受水流侵蚀、应力变化等因素影响,导致形成裂缝、渗漏、脱落、露筋等缺陷,造成重大安全隐患。目前,水电枢纽缺陷识别主要依靠人工巡检,存在效率低、风险高等问题。提出一种水电枢纽缺陷识别方法,基于完全自注意力机制构建缺陷识别网络,以提高网络捕捉长距离全局信息的能力和缺陷识别精度。设计2个同尺寸的自注意力编码器分支,通过双分支结构完成不同尺度自注意力计算,从而提取多尺度缺陷特征,增强全局语义表达能力。构建一个基于类别向量的自注意力混合融合模块,并对2条分支的多尺度特征进行融合,以有效应对水电枢纽缺陷图像尺度变化大、形态多样等问题。在四川某水电站枢纽缺陷数据集上的实验结果表明,该方法宏查准率可达98.87%,缺陷识别效果优于SVM、ResNet-50、MobileNet v3等方法。 相似文献
8.
视频行为识别是智能视频分析的重要组成部分.传统人体行为识别基于人工设计特征方法涉及的环节多,具有时间开销大,算法难以整体调优的缺点.针对two-stream系列的深度卷积网络,时间网络的输入是直接以相邻两帧的光流场作为输入,其中也包含了镜头移动、背景运动等无关的运动特征的问题,在视频时序上仅通过分块取样固定长度的帧,其... 相似文献
9.
编码器-解码器结构是神经机器翻译最常用的一种框架,许多新型结构都基于此框架进行设计以改善翻译性能。其中,深度自注意力网络是非常出色的一种网络结构,其利用了自注意力机制来捕获全局的语义信息。然而,这种网络却不能有效地区分每个单词的相对位置,例如,依赖单词究竟位于目标单词的左边还是右边,也不能够捕获当前单词的局部语义。为了缓解这类问题,该文提出了一种新型的注意力机制,叫做混合注意力机制。该机制包含了对自注意力网络设计的多种不同的特定掩码来获取不同的语义信息,例如,全局和局部信息,以及左向或者右向信息。最后,该文提出了一个压缩门来融合不同类型的自注意力网络。在三个机器翻译数据集上的实验结果表明,该文方法能够取得比深度自注意力网络更好的结果。 相似文献
10.
角色识别任务是近年来提出的一项自然语言处理任务,面向多方参与的对话场景,目标是将对话中的人物提及映射到具体的人物实体。目前在该任务的最优系统中,只使用了较为简单的编码器,并未针对对话文本特点进行改造创新。该文在最优系统的基础上,提出了一种基于多尺度自注意力增强的方法,借助不同尺度的自注意力,来获得更好的信息表示。首先,通过尺度较大的全局注意力,对场景内的全部对话信息进行处理,保留了全局的对话信息;然后,通过尺度较小的局部注意力,对局部范围内的对话进行计算,捕获近距离的信息之间的关联关系;最后,将不同尺度得到的信息进行融合,达到对编码信息增强的效果。在SemEval2018 Task4任务上的实验结果表明了该方法的有效性,相较于目前最优系统,在全部实体的F1值上提高了18.94%。 相似文献
11.
近年来中国经济发展迅速,相应的,中国的金融市场也迅速发展,受到国内外投资者的关注,因此研究中国金融市场上股票价格趋势对学者、投资者和监管者具有重要的意义.随着量化交易等理念的兴起,越来越多的学者将深度神经网络(DNN)应用于金融领域.虽然近几年DNN在图像、语音以及文本等方面已经取得了极大的成功,但其在金融时间序列预测... 相似文献
12.
自注意力机制的视频摘要模型 总被引:1,自引:0,他引:1
针对如何高效地识别出视频中具有代表性的内容问题,提出了一种对不同的视频帧赋予不同重要性的视频摘要算法.首先使用长短期记忆网络来建模视频序列的时序关系,然后利用自注意力机制建模视频中不同帧的重要性程度并提取全局特征,最后通过每一帧回归得到的重要性得分进行采样,并使用强化学习策略优化模型参数.其中,强化学习的动作定义为每一帧选或者不选,状态定义为当前这个视频的选择情况,反馈信号使用多样性和代表性代价.在2个公开数据集SumMe和TVSum中进行视频摘要实验,并使用F-度量来衡量这2个数据集上不同视频摘要算法的准确度,实验结果表明,提出的视频摘要算法结果要优于其他算法. 相似文献
13.
14.
Jiaming Mao Mingming Zhang Mu Chen Lu Chen Fei Xia Lei Fan ZiXuan Wang Wenbing Zhao 《计算机系统科学与工程》2021,39(3):373-390
The rapidly increasing popularity of mobile devices has changed the methods with which people access various network services and increased network traffic markedly. Over the past few decades, network traffic identification has been a research hotspot in the field of network management and security monitoring. However, as more network services use encryption technology, network traffic identification faces many challenges. Although classic machine learning methods can solve many problems that cannot be solved by port- and payload-based methods, manually extract features that are frequently updated is time-consuming and labor-intensive. Deep learning has good automatic feature learning capabilities and is an ideal method for network traffic identification, particularly encrypted traffic identification; Existing recognition methods based on deep learning primarily use supervised learning methods and rely on many labeled samples. However, in real scenarios, labeled samples are often difficult to obtain. This paper adjusts the structure of the auxiliary classification generation adversarial network (ACGAN) so that it can use unlabeled samples for training, and use the wasserstein distance instead of the original cross entropy as the loss function to achieve semisupervised learning. Experimental results show that the identification accuracy of ISCX and USTC data sets using the proposed method yields markedly better performance when the number of labeled samples is small compared to that of convolutional neural network (CNN) based classifier. 相似文献
15.
随着加密技术的全面应用, 越来越多的恶意软件同样采用加密的方式隐藏自身的网络活动, 导致基于规则和特征的传统方法无法满足准确性和普适性的要求. 针对上述问题, 提出一种层次特征融合和注意力的恶意加密流量识别方法. 算法具备层次结构, 依次提取数据包的特征和会话流的特征, 前一阶段设计全局混合池化方法进行特征融合; 后一阶段使用注意力机制提高BiLSTM网络分析序列关系的能力. 最终, 实验采用CIC-AndMal 2017数据集进行验证, 结果表明: 模型设计合理, 相比TextCNN模型和HST-MHSA模型, 漏报率分别降低5.8%和2.6%, 加权F1值分别提高4.7%和3.5%, 在恶意加密流量识别和分类方面体现良好的优化效果. 相似文献
16.
现有的指纹索引方法大多是基于实数值特征向量,当应用于大规模指纹库时无法避免计算资源与存储空间消耗巨大的问题。为了在海量指纹库中进行高效快速检索并得到实时响应结果,提出了一种全新的基于有监督深度哈希的指纹索引方法。将传统指纹领域知识与自注意力深度哈希模型相结合。传统领域知识用于指纹图像预处理来获取指纹二值骨架图,自注意力深度哈希模型进行特征提取与哈希映射得到二进制编码。其中特征提取模块使用Transformer结构替换卷积神经网络来提取指纹细节特征,此外模型中加入了自动对齐模块并设计了一种STN-AE的结构来辅助训练该模块。最后在NIST4、NIST14、FVC2000、FVC2002、FVC2004等公开指纹数据集上进行了实验,实验结果证实该方法在提高海量指纹库中的检索速度以及降低存储消耗等方面是卓有成效的。 相似文献
17.
Tor等匿名流量的分类与识别对运营商监管网络安全具有重要意义,但目前Tor流量的分类检测技术普遍存在识别准确率低、缺乏实时性、无法有效处理高维数据等问题。为此,提出一种Tor流量在线识别方法。通过搭建基于逻辑回归的深度神经网络,提取Tor流量特征匹配度以实现特征增强,并使用人工蜂群机制代替梯度下降等常见迭代算法,得到流量分类及识别结果。在此基础上,构建一套实时流量检测工具应用于实际生产环境中。在公开Tor数据集上的实验结果表明,与逻辑回归、随机森林、KNN算法相比,该算法的精确率和召回率分别提高了10%~50%,相比梯度下降的迭代算法准确率提高了7%~8%。 相似文献
18.
提出一种基于深度神经网络的多模态动作识别方法,根据不同模态信息的特性分别采用不同的深度神经网络,适应不同模态的视频信息,并将多种深度网络相结合,挖掘行为识别的多模态特征。主要考虑人体行为静态和动态2种模态信息,结合微软Kinect的多传感器摄像机获得传统视频信息的同时也能获取对应的深度骨骼点信息。对于静态信息采用卷积神经网络模型,对于动态信息采用递归循环神经网络模型。最后将2种模型提取的特征相融合进行动作识别和分类。在MSR 3D的行为数据库上实验结果表明,本文的方法对动作识别具有良好的分类效果。 相似文献