首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
硅橡胶表面导电涂层的研究   总被引:1,自引:0,他引:1  
导电涂料是一种高效、低廉且应用方便的电磁辐射防护材料,具有广泛的应用前景.文章通过物理共混和化学改性方法研究了3种不同树脂并制备涂料,考察了涂料在硫化硅橡胶上的附着效果,分析了不同因素对涂料在硫化硅橡胶上附着力的影响,同时研究了银粉的含量与涂层体积电阻率之间的关系,考察了导电涂层的微观相态结构.附着力测试结果表明以乙烯基硅树脂制备的涂料附着效果好;扫描电镜(SEM)观察结构表明,ω(银粉)为65%时,在涂层中的分布比较均匀致密;导电性能和附着力测试结果表明,ω(银粉)为65%时,涂层体积电阻率较低,附着力最好.  相似文献   

2.
UV固化环氧丙烯酸酯-纳米Al2O3颗粒复合涂层的性能   总被引:2,自引:0,他引:2  
制备了UV固化环氧丙烯酸酯-纳米Al2O3复合涂料. 对纳米复合涂层的硬度、附着力、耐腐蚀性及热稳定性等性能进行了表征,并考察了纳米Al2O3对涂层性能的影响规律. 结果表明,涂层硬度及附着力先随纳米Al2O3添加量增加而提高,添加量为2%时,涂层附着力达1级;添加量为3%时,涂层铅笔硬度达6H;添加量继续增大,涂层硬度及附着力均下降. 对纳米复合涂层的热重分析和电化学阻抗谱分析结果表明,加入纳米Al2O3能提高涂层的热稳定性,但加入未改性纳米Al2O3使涂层的耐腐蚀性下降.  相似文献   

3.
采用硅烷偶联剂KH-550、KH-560和KH-570对自制的复合纳米导电填料进行改性,制备了3种不同的导电防腐涂料,使用扫描电镜(SEM)、傅里叶变换红外光谱(FT-IR)、体积电阻率/表面电阻率测定仪、划格实验法及铅笔硬度仪等方法对导电涂料进行表征和测试,研究了不同偶联剂对导电涂料理化性能、导电性能以及防腐性能的影响。结果表明:3种硅烷偶联剂处理后的复合导电涂层均具有优良的附着性、高硬度及较低的电阻率,其中KH-560性能最佳,当其含量为3%时涂层的电阻率低至1.9×10-4Ω·m,且带有环氧基的KH560对复合纳米涂层的耐腐蚀性能也有很大的提高。  相似文献   

4.
纳米纤状聚吡咯导电涂料的制备与性能研究   总被引:1,自引:0,他引:1  
以十六烷基三甲基溴化铵(CTAB)胶束作为软模版,过硫酸铵(APS)为氧化剂制备纳米纤状聚吡咯(C-PPy)导电聚合物;利用电子转移再生催化剂原子转移自由基聚合(ARGET-ATRP)法合成羟基丙烯酸酯氟树脂,对其结构、形貌进行表征。将C-PPy与氟化丙烯酸酯树脂、固化剂复合,制成复合导电涂料,测试涂层力学性能与导电性能。实验结果表明:当C-PPy用量占涂料体系的质量分数为15%时,复合涂层的耐冲击性提高约133%,导电性能达到0.006 S/cm,涂层综合性能优异。  相似文献   

5.
聚苯胺/聚乙烯醇微乳液导电涂料的研制及其性能的测试   总被引:3,自引:0,他引:3  
采用氧化聚合方法合成可溶性的聚苯胺/聚乙烯醇(PAn/PVA)复合导电涂料.研究了反应体系中聚苯胺的含量、反应时间、温度及酸浓度对导电涂料电导率的影响,确定了较佳的聚合反应条件,同时对其稳定性、导电性、力学性及其表面结构等进行了测试.结果表明,PAn/PVA导电涂料稳定性好,在空气中放置80h电导率无明显变化,涂料涂层的电导率最高可达4.57s/cm,加入环氧树脂可明显改善涂层的附着力.  相似文献   

6.
炭黑/碳化硅复合导电涂料的制备及导电性能研究   总被引:2,自引:0,他引:2  
制备了一种以炭黑、碳化硅为混合填料的复合导电涂层。研究了炭黑/碳化硅混合填料复合涂层的导电性能,重点研究了混合填料和炭黑种类对涂料导电性能的影响。试验结果表明,混合填料能够明显改善涂层的导电性能,混合填料的炭黑含量在5%时出现渗透阈值,当炭黑含量为25%时电阻率降至10.59Ω·cm。  相似文献   

7.
为了提高尼龙底材用导电涂料的附着力和贮存稳定性,设计了尼龙用导电涂料配方.通过分析树脂、导电填料、溶剂、助剂以及颜基比对导电涂料性能的影响,获得了最佳配方如下(以质量分数表示):羟基丙烯酸树脂20%,封闭异氰酸酯6%,改性聚酯2%,银包铜粉(wAg=50%)40%、复合溶剂30%以及助剂2%.  相似文献   

8.
孙鹏  董劲  黄惠  何亚鹏  陈步明 《涂料工业》2021,51(12):14-21
为了探究附着力促进剂对铝阴极板表面环氧涂层性能的影响,本文通过拉拔实验、盐雾实验、硫酸锌浸泡实验以及交流阻抗测试,系统研究了磷酸酯类和硅烷偶联剂类附着力促进剂对环氧涂层附着力和耐腐蚀性的影响。结果表明:附着力促进剂可以明显提升环氧涂层和铝基材的结合力,添加 3%附着力促进剂 2063的涂层附着力最优,可以达到 12. 85 MPa,破坏类型以层间破坏为主;但是交流阻抗图谱显示其低频区的阻抗值比附着力促进剂 4512的低 2个数量级,通过盐雾实验和硫酸锌浸泡实验也可以看出附着力促进剂 4512可以显著提升环氧涂层的耐腐蚀性能。为平衡涂层附着力和耐腐蚀性能,通过将附着力促进剂 2063与 4512按质量比 2∶1进行复配,其附着力和耐腐蚀性可以满足要求,附着力可以达到 14. 4 MPa。  相似文献   

9.
本文研究导电浆料各组成部分对导电碳浆性能的影响,以确定最佳选择与用量。采用聚乙烯吡咯烷酮(PVP)作为分散降粘剂,羧甲基纤维素钠(CMC)替代传统树脂作为粘结剂,并通过公司自产的石墨烯和碳纳米管作为导电填料,有效结合与利用石墨烯与碳纳米管良好导电优势,制备了高导电的碳系复合导电浆料。并对导电浆料进行导电性能、微观形貌SEM表征分析其导电机理,以及将其制作成电加热膜应用于电加热领域进行热学性能测试。研究结果表明,采用羟甲基纤维素钠为粘结剂,以聚乙烯吡咯烷酮为分散剂,以石墨烯/碳纳米管复配为导电填料制得的碳系复合导电浆料电阻率低至0.009Ω·cm,且其与基材附着力好,非常适合运用于加热膜领域。将它制作成电加热膜后,表现出了极佳的应用效果,通过电压调节,加热膜表面温度具有可控性且可调节发热温度范围广,并具有升温速率极快的优势,实验测试结果显示,在电压为11 V通电60 s内温度就能快速升至稳定温度110.3℃左右。  相似文献   

10.
设计了液体储罐用热控涂层结构:环氧云铁底涂(50~60μm)+聚氨酯硬泡隔热层+网格加强层+过渡层(0.5 cm)+热反射面层(50~60μm)。研究了聚氨酯隔热层厚度对20 L保温桶保温效果的影响,确定了适宜的厚度为5 cm,实现了腐蚀与防护、热阻隔、热反射等技术集成。对样板涂层各层间附着力、抗压强度、耐高低温交变、耐盐雾性能进行了测试,以13 m3和40 m3的储罐模拟化工储罐,分别涂覆复合热控涂层,与储罐旁的消防棚进行比较,进行热控性能测试。结果表明:钢板与底涂之间及过渡层与热反射层之间的附着力均为1级,底涂与保温层之间及保温层与过渡层之间的附着力分别为6.3 MPa和5.2 MPa;耐盐水及盐雾测试中,复合涂层表面无起泡、脱落现象;涂层的抗压强度约为0.35 N/mm2;高低温交变10个循环后,表面光滑平整,无裂纹。其性能满足储罐工作环境的需要。在涂层热控性能测试中,当消防棚内的温度在20~42°C之间波动时,13 m3和40 m3的储罐内水温波动在4°C以内,表明该复合涂层结构保温效果良好。  相似文献   

11.
以油酸、二乙烯三胺和氯化苄为原料,合成了油酸基咪唑啉季铵盐缓蚀剂。通过FTIR、1HNMR对其结构进行了表征,并离子交换至钠基蒙脱土(DK0)层间,制备了缓蚀剂改性蒙脱土(QACDK0)。通过XRD、TGA和UV-Vis对其结构、组成及层间缓蚀剂释放性能进行了表征。结果表明,咪唑啉季铵盐缓蚀剂约占QACDK0质量的38.96%,并将蒙脱土层间距由1.28 nm(DK0)扩大至3.98 nm(QACDK0)。利用DLS及Zeta电位对添加有QACDK0的水性环氧树脂进行了稳定性测试,其Zeta电位为–27.8 m V,具有较高的稳定性。电化学阻抗谱(EIS)测试表明,在腐蚀介质中浸泡30 d后,基于QACDK0制备的清漆漆膜仍具有2.29×108?·cm2的高阻抗,表明涂层具有较好的耐腐蚀性。并且在耐中性盐雾测试中,QACDK0对应的防腐色漆耐盐雾时间最长,验证了该涂层具有良好的耐盐雾性能。  相似文献   

12.
Water-based anticorrosive coatings have poor water resistance, which easily lead to coating deterioration and metal corrosion. In order to improve the anticorrosion performance of waterborne coating, herein, the polytetrafluoroethylene/dimethyl siloxane/epoxy resin (PTFE/PDMS/EP) hydrophobic anticorrosive coating was prepared by layer-by-layer construction. The spatial structure and microscopic morphology of the hydrophobic coating were analyzed by XRD, FTIR, and SEM. The hydrophobicity and corrosion resistance of the composite coating were analyzed by hydrophobicity test, electrochemical polarization curve, hydrophobicity and corrosion resistance test of the mixed layer, Tafel polarization curves, and AC impedance spectrum. The results showed that the water contact angle of PTFE/PDMS/EP coating reached 141° and the protection efficiency of PTFE/PDMS/EP coating was 98.62%. After soaking for 7 days, the corrosion process still stays at the initial stage, which was mainly due to the good sealing and barrier properties and high anticorrosion efficiency of PTFE/PDMS/EP coating. The coating has high corrosion protection efficiency and long service life, which is of great significance to metal corrosion protection in harsh marine environments.  相似文献   

13.
In this article, a protective sealed Ni–TiO2 composite coating (SCC) was prepared on sintered NdFeB magnet by pulse current electrodeposition and sol–gel combined technique. For a comparison, unsealed Ni–TiO2 composite coating (UCC) was also studied. The surface morphologies of composite coating were studied using scanning electron microscope (SEM). The structure of sealing layer was studied by Fourier transform infrared (FT-IR) spectrum. The anticorrosive properties of composite coating in neutral 3.5 wt% NaCl solution were evaluated by potentiodynamic polarization measurements and electrochemical impedance spectroscopy (EIS). In order to further investigate the anticorrosive properties of SCC, a long-term immersion test was carried out in neutral 3.5 wt% NaCl solution. The results of corrosion tests showed that due to the blocking effect of sealing layer, SCC can suppress the corrosion process by holding back the transfer or diffusion of corrosive medium, and therefore showed the excellent anticorrosive properties for sintered NdFeB magnet.  相似文献   

14.
周敏 《无机盐工业》2023,55(1):112-117
采用原位聚合的方法在锑掺杂氧化锡/氧化钛复合材料(TIO)上包覆一层完整的聚苯胺(PANI)膜,成功制备了PANI/TIO复合材料,将其作为水性聚氨酯涂料的填料,制备了水性聚氨酯导电涂料。利用X射线粉末衍射、透射电镜、红外光谱等分析方法对复合材料进行表征,利用涂层机械性能测试对导电涂料进行了测试。同时得到了制备PANI/TIO三元复合材料的最佳工艺条件:苯胺(An)包覆量为15%、m(An)/m[磺基水杨酸(SSA)]=0.4、m(An)/m[过硫酸铵(APS)]=3。在最佳工艺条件下,得到的PANI/TIO复合材料体积电阻率为15.3Ω·cm。实验结果表明:当填料比为15%时涂层机械性能最佳,硬度为2B、耐冲击力为50 cm、附着力为1级、涂层表面电阻为3.56×105Ω/m2,该导电涂料有较好的应用前景。  相似文献   

15.
高导热低黏度环氧树脂灌封胶   总被引:1,自引:0,他引:1  
以E-51型环氧树脂为基体,Al2O3为导热填料,CYH-277为稀释剂制备高导热低黏度环氧树脂灌封胶。优化了硅烷偶联剂KH-560、稀释剂CYH-277的用量;分别采用NDJ-7型旋转式黏度计和Hot Disk型热常数分析仪测试其黏度和导热系数。结果表明:硅烷偶联剂KH-560用量为1.25%(wt)时效果最优;随CYH-277用量的增加灌封胶黏度、耐热性能均逐渐下降,最佳用量为25%(wt);随Al2O3用量增加,灌封胶的黏度、导热系数均增大;用量相同时,填充20μm Al2O3的树脂体系相比于填充6μm Al2O3树脂体系黏度小、导热系数大,复配两种粒径Al2O3对应树脂体系的导热性最好;复配Al2O3用量为86%(wt)时,导热系数达到2.23W/(m·K),此时灌封胶的黏度为30100mPa·s,仍保持较好的加工流动性。  相似文献   

16.
以无酸丙烯酸酯系压敏胶为导电胶基体,苯二亚甲基二异氰酸酯(XDI)为交联剂,镍/银混合粉体为导电填料,制备了铜箔导电胶带。讨论了导电粒子的种类及其添加量、交联剂的用量、老化存放时间等对导电胶带的粘接性能、导电性能及电磁屏蔽性能的影响。结果表明,当镍银混合粉添加15%,交联剂用量25%,干胶厚度45μm时,制备的胶带综合性能良好。其粘接强度大于19N/25mm,体积电阻率为6×10^-3Ω·cm,电磁屏蔽效能大于90dB(频率从30-1500MHz),且耐高温性能稳定。  相似文献   

17.
以六亚甲基二异氰酸酯(HDI)、聚醚二元醇(Diol-1000)、二羟甲基丙酸(DMPA)、乙二胺(EDA)和环氧树脂(E-20)等为主要原料制备了聚氨酯-环氧树脂复合乳液。研究了聚醚二元醇含量、羧基含量对复合乳液的稳定性及涂膜柔韧性和耐水性等的影响,用电化学阻抗技术研究了涂层的耐腐蚀性能。  相似文献   

18.
为了提高光固化涂料的耐腐蚀性,将不同质量分数的石墨烯添加到光固化涂料中,制备了石墨烯复合光固化防腐涂层。对不同含量石墨烯复合光固化防腐涂层的硬度、耐冲击性、附着力等物理性能进行测试,并通过极化曲线、电化学阻抗谱等对其电化学性能进行了研究。最后,采用盐雾试验对不同石墨烯添加量的光固化涂层的防腐性能进行了评价。结果表明:当石墨烯的添加量为 0.1%时,涂层的硬度、耐冲击性以及附着力等物理性能得到显著增强,此时涂层的腐蚀电位最高,腐蚀电流密度最低,具有优异的耐腐蚀性能。  相似文献   

19.
以盐酸为掺杂剂、过硫酸铵为氧化剂、咪唑类离子液体为稳定剂,采用化学氧化聚合法合成了导电聚苯胺(PANI)颗粒,将其分散到水性环氧树脂(ER)中制成聚苯胺水性环氧防腐涂层,研究了聚苯胺颗粒对涂层防腐性能和机械性能的影响。结果表明,添加聚苯胺显著提高了水性环氧涂层的阻隔性能,信号频率f=0.01 Hz时,PANI/ER涂层的阻抗(|Z|f=0.01Hz)均高于纯ER涂层。添加5.0wt% PANI时ER涂层阻隔性能最好,浸泡0~168 h时|Z|f=0.01Hz稳定在约8.0×108 Ω?cm2,浸泡168 h后|Z|f=0.01Hz=7.5×108 Ω?cm2,远高于ER和其它PANI/ER体系。中性盐雾实验结果表明,聚苯胺赋予了涂层钝化腐蚀的能力,显著提高了涂层的防腐性能,且其添加量越高,防腐性能越好。弯曲和冲击实验结果表明,涂层的机械性能随聚苯胺含量增加先上升后降低,当聚苯胺添加量不超过5.0wt%时,涂层的机械性能优异,附着力和韧性均较好;PANI添加量增至7.0wt%时,ER涂层的脆性明显变大,机械性能下降。聚苯胺在水性环氧体系中的最宜添加量为5.0wt%,此时涂层的机械性能良好,综合防腐性能最优。  相似文献   

20.
AZ31镁合金表面防腐胶粘涂层的研制   总被引:1,自引:0,他引:1  
胶粘涂层法是有效提高镁合金耐腐蚀性能的表面处理技术之一.以E-44环氧树脂、低分子量650#聚酰胺、云母氧化铁等为主要原料,制备了适用于AZ3l镁合金基体的防腐胶粘涂层.研究了填料含量对涂层外观、施工性和耐蚀性能的影响.结果发现,当填料质量分数为60%、涂层厚度为180~220μm时,防腐胶粘涂层具有良好的外观及施工性,附着力为1级,耐盐雾时间168 h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号