首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
电压无功控制是保证配电网经济安全运行的重要任务,协调多种调节手段能提高配电网的运行效率。考虑了有载调压变压器、电压调节器、分组投切电容器和分布式电源逆变器等电压无功调控设备,并针对现有电压无功控制模型存在的无谓动作和求解效率低等问题,提出了一种考虑设备动作损耗的配电网分布式电压无功优化策略。首先,基于支路潮流方程建立了配电网电压无功控制模型,并松弛为混合整数二阶锥规划。同时考虑到设备的动作损耗,提出了基于模型预测控制的滚动优化模式。进一步基于交替方向乘子法实现配电网多区域分布式协同优化。最后,基于改进的IEEE33节点测试系统进行了仿真。仿真结果表明:所提控制策略能够避免设备的无谓动作,并解决了“维数灾”问题,提高了配电网的电压无功控制效率。  相似文献   

2.
针对如何进一步利用充电站的可调容量问题,提出一种利用充电设施剩余容量的充电站无功补偿控制策略,在提升充电站容量利用率的同时,对配电网进行无功补偿,改善电压质量。首先,建立充电站与其下属充电桩之间的控制模型,以配电网内整体电压偏差最小为目标,考虑车辆的充电需求,通过模型预测控制算法,计算充电站内各个充电桩的输出功率。然后,配电网内各充电站共享各自的功率与电压预测数据,实现各个充电站之间的协调控制,达到配电网充电站所在节点电压质量整体最优的效果。最后,通过仿真验证了所提充电站无功补偿控制策略能有效提升充电站容量利用率,实现充电站节点电压质量整体最优的无功补偿。  相似文献   

3.
在高渗透光伏接入多电压等级配电网中,针对低压分布式光伏无功能力没有被充分利用和高/中/低压配电网无功电压未整体协调优化的问题,提出了一种充分挖掘光伏无功能力的多电压层级配电网无功电压协调控制策略。在低压配电网中,对于暂不具备通信网络,无法实现统一调度的光伏逆变器,采用3种就地自主电压控制模式进行实时无功电压控制;在多电压层级配电网无功电压协调控制模型中,考虑包括具备通信网络的光伏逆变器在内的各种无功源,建立电压分区和主导节点选择模型,设计上层全局优化和下层分区优化的双层协调控制策略,该策略充分挖掘了光伏无功对配电网电压的调节能力,实现对整个配电网的无功电压精准控制。将所提策略应用于江苏某220 kV主变区域实际系统,验证了其无功电压控制和消纳光伏发电的优势。  相似文献   

4.
分布式电源的大量并网增加了配电网的无功调压难度,利用传统无功控制策略调压,需要多次调整。通过综合不同负荷的无功控制手段,提出了一套完整的配电网电压控制策略。在一个实际配网系统的仿真结果表明,所提策略能够在分布式电源出力波动较大的情况下,将配电网电压限制在合理范围内,有效降低分布式电源并网对电压的影响,提高电能质量。  相似文献   

5.
随着配电网中分布式光伏渗透率的逐步提高,发电功率和负荷需求不平衡导致的电压越限问题日益突出.为充分调用可控资源进行调压,同时降低系统的通信量和计算量,文中基于配电网节点的近似电压灵敏度,结合就地控制和分布式控制的特点,提出一种含高渗透率光伏的配电网电压控制策略.该策略利用本地量测数据和分布式通信信息,通过各关键节点的无功协调控制和有功优化调度,实现系统电压的经济快速控制.仿真结果表明,所提策略具有良好的电压控制效果和经济性,能够降低系统的运行成本.  相似文献   

6.
随着光伏高渗透率接入不同电压等级配电网,各电压等级配电网之间相互影响更加复杂,实现运行控制策略的经济性和安全性是一个极大的挑战。文中以中压配电网为控制对象,计及不同电压等级配电网间的交互影响,提出了基于模型预测控制(MPC)的主动配电网多级电压控制方法。中高压配电网控制中,考虑高压配电网所控制的有载调压变压器(OLTC)/并联电容器组(CB)的未来时刻动作计划,建立中高压关联模型,协调控制中压配电网连续型设备与高压配电网离散型设备;中低压配电网控制中,计及中低压配电网间的不确定性交换功率及其相互影响,构建中低压关联模型,实现中压配电网对低压配电网的支撑。最后,在Matlab中进行仿真分析,验证所提多级电压控制的可行性和有效性。  相似文献   

7.
柔性可控资源的接入使得配电网无功电压控制关系更加复杂。提出基于数据驱动的配电网无功电压控制方法,通过蒙特卡洛方法生成配电网运行场景,构建配电网运行状态和对应的无功优化策略的映射数据集;利用在线极限学习机(Online Sequential Extreme Learning Machine,OS-ELM)构建无功优化的数据驱动模型,将配电网节点电压、负荷以及其他运行参数作为输入,将无功调节设备状态以及控制参数作为输出,建立系统的特征与优化策略之间的隐性关系;最后,将电网实时运行状态将其作为在线无功优化模型的输入得到系统实时的无功电压控制策略。基于IEEE33节点主动配电网对比仿真分析可知,所提方法在系统模型和参数建模未知的情况下实现无功电压的精准控制。  相似文献   

8.
大规模分布式电源的接入使得配电网电压优化控制策略与传统配电网差异较大。针对就地控制中光伏逆变器调压之间缺乏协同的问题,该文提出了一种基于多智能体深度强化学习的配电网实时电压控制方法。首先根据电压控制模型设计了部分可观测的马尔科夫决策过程,然后采用多智能体双延迟深度确定性策略梯度算法求解,根据中心化训练、分散式执行的框架实现光伏逆变器的无功协同控制。该方法能智能决策各个逆变器的无功调节量,且能够根据源荷的随机变化实时给出电压控制策略,具有较好的实时性和控制经济性。最后通过仿真算例验证了所提方法的有效性。  相似文献   

9.
针对大量多维异构的电网数据引起的存储压力、计算延迟和云边通信问题,提出了一种基于Edgex Foundry的配电网无功电压云边协同控制方法。首先,感知配电网10 kV侧的电网数据,构建了“边云”、“边边”协同控制模块与配电网无功电压信息交互模型,基于多种通信协议建立云边数据传输通道。然后,部署了面向配电网无功电压的云边协同控制模型,构建了基于Edgex Foundry的配电网无功电压“云-边-端”集中-分布式协同控制架构,实现云边协同架构与十五区图控制策略交互融合。最后,基于仿真验证了云边协同控制方法可以降低计算时延,缓解云端计算和存储压力,实现在云边协同控制中母线与支线整体联控、异常支线局部单调两种调控模式的深度融合,为实现配电网无功电压云边协同控制提供了技术支撑。  相似文献   

10.
基于模型预测控制的主动配电网电压控制   总被引:4,自引:0,他引:4  
为解决主动配电网中分布式可再生能源和储能系统造成的电压波动影响,基于模型预测控制理论提出了主动配电网电压调节控制策略,充分利用主动配电网中分布式电源、储能系统和有载调压变压器,实现采用最小控制成本的控制方案进行电压控制。该控制方案基于模型预测控制,采用多步滚动优化,使得电压控制过程更为灵活平滑,控制模型求解采用二次规划。通过IEEE 33节点辐射状配电网系统算例分析,证明了所提电压控制策略的可行性和有效性。  相似文献   

11.
柔性多状态开关模型预测协同控制策略   总被引:1,自引:0,他引:1  
柔性多状态开关(FMSS)作为一种新型电力电子装置能够部分替代配电网中传统联络开关,实现潮流的不间断灵活调控,优化电压分布。探讨了三端FMSS在配电网中的几种可能接入拓扑及工作模式,建立了三端FMSS的动态数学模型,结合三端控制约束提出了三端FMSS模型预测协同控制策略。该策略具有原理清晰、实现简单、动态响应速度快等优点,避免了传统比例—积分(PI)双闭环控制策略存在的控制结构复杂、PI参数较多且整定困难的问题。基于模型预测控制对各端口UdcQ控制模式、PQ控制模式,以及Uacf控制模式进行了具体算法实现。为了验证所提方案的有效性,在MATLAB/Simulink环境下搭建了三端FMSS仿真模型,不同工况下的仿真结果验证了所提三端FMSS模型预测协同控制策略能够有效实现多端口间的协同控制,发挥FMSS的调节功能,为FMSS的配电网应用提供灵活的解决方案。  相似文献   

12.
大规模分布式电源的接入对配电网无功优化提出了巨大的挑战,而传统集中优化存在依赖中央控制器,易产生通信堵塞等弊端。为提高主动配电网无功电压控制的可靠性,采用二阶锥松弛技术建立了主动配电网无功优化模型,并基于辅助问题原理提出了一种主动配电网分区分布式无功优化控制方法,并进一步提出了边界变量标准化处理方法,以提高分区无功优化的收敛速度,实现全局网损优化。基于所提优化方法,各个分区仅需采集区内功率电压信息,并与相邻分区交互边界变量即可实现无功调度和全局网损优化,保证系统电压质量。最后,基于IEEE 69节点配电系统进行仿真,验证了所提控制方法的有效性。  相似文献   

13.
分布式光伏的大规模接入引起配电网电压越限问题。光伏作为新型调压主体,其自主性及多主体交互耦合增加了配电网调压的难度。因此,文中提出面向光伏用户群的多主体分级电压调控方法。首先,根据光伏的调压容量与电压支撑度建立分级模型。然后,在分级基础上利用主从博弈模型研究配电网调压过程中多主体之间的交互耦合特性:配电网运营商作为主侧,在保证电网安全稳定运行下分级设定调压补偿电价;光伏用户作为从侧,跟随调压补偿电价以调压收益最大为目标来优化无功调节策略。最后,通过仿真分析证明了所提方法能够有效解决电压越限问题并提高光伏用户收益。  相似文献   

14.
针对分布式光伏接入配电网带来的电压越限问题,考虑电池储能与光伏逆变器的调压经济性,本文基于一致性算法提出一种计及设备寿命损耗成本的分布式电压控制策略。首先,分析光伏逆变器与储能的调压机理,推导出可用于分布式迭代计算的配电网电压灵敏度参数;其次,分别建立储能电池与光伏逆变器的寿命损耗模型,并利用寿命损耗模型推导出单位功率成本模型,再结合电压灵敏度参数构建出单位调压成本模型;然后,以单位调压成本作为一致性变量,设计基于一致性算法的分布式电压控制策略,得到各节点储能与光伏逆变器的功率调节方案。算例结果表明,所提控制策略能够兼顾各节点设备寿命损耗与总体调压经济性,在有效抑制电压越限的前提下充分降低配电网电压控制成本。  相似文献   

15.
针对高渗透率分布式光伏接入配电网导致的电压越限问题,以及当前电力通信网络难以实现对接入光伏集中控制的现状,提出了一种光伏集群分散式电压控制方法。根据预测数据对配电网进行集群划分,采用集群间的协调控制策略,以电压越限量和网络损耗加权值最小为优化目标,基于交替方向乘子法进行优化计算。在集群间通信缺失的情景下,基于无功-电压控制曲线自主调节分布式电源逆变器的无功输出,即通过集群内的电压控制策略解决通信中断时发生电压越限的问题。以IEEE 33节点配电系统为例进行仿真分析,结果表明所提控制方法不仅对改善电压分布不均、降低网损、减轻控制器的计算负担具有积极的作用,还能在通信缺失的情景下具有良好的控制效果。  相似文献   

16.
为协调运用配电网各类调压资源,实现经济、灵活的电压控制,整合中高压配电网各类无功治理设备,提出考虑低压光伏无功集群贡献的配电网电压无功控制资源协调运行优化方法。针对配电网低压侧分布式小容量离线运行光伏电源,设计了3种光伏集群无功运行模式,使其按模式预设在线自律运行。提出低压光伏集群无功管控策略,建立配电网电压无功控制资源协调优化模型。采用最优分割联合优化方法对变压器分接头及电容器组的切换时间及切换状态进行优化,在此基础上得出光伏集群无功运行模式及其他治理设备无功输出优化结果。采用前推回代潮流计算嵌套粒子群优化的算法进行求解。仿真算例证明了所提方法的合理性及有效性。  相似文献   

17.
针对风电场单时间断面预测信息存在的无功控制滞后且电压指令跟随性差的问题,提出一种基于模型预测控制的双馈风电场无功电压控制策略,该策略以风电场并网点电压和机端电压偏差最小为目标。首先,基于时间尺度计算无功设备出力及负荷需求预测信息,建立无功电压预测控制模型。其次,在控制周期内划分更细化的预测控制点,修正预测模型,提前协调并分发双系统控制指令,有效降低反应时间。该策略在风速快速波动时可优化电压控制性能,提高跟随精度,使无功设备快速补偿无功以稳定并网点电压,并合理调控静止无功发生器的动态无功容量,实现无功储备最大化。在MATLAB/Simulink中建立双馈风电场模型进行仿真,结果表明,所提策略能够实现快速协调无功设备出力,有效降低反应时间,增强了风电场无功快速调节能力。  相似文献   

18.
分布式光伏大量接入配电网后电压越限问题成为影响电网安全稳定运行的关键因素。为了适应高渗透率、大规模分布式光伏的接入,提高系统调压能力,本文依据主动配电网内调压资源特性的不同,对其进行了分类分级处理,提出了主动配电网多级无功电压控制策略,即分别利用小容量分布式光伏、光伏电站无功、传统VQC装置和光伏电站有功实现系统一、二、三、四级调压。其中,针对小容量分布式光伏所采用的分散式就地控制策略,提出了基于并网点电压和光伏实际有功出力的cosφ(U、P)控制模型。最后,基于改进的IEEE33节点算例进行了仿真,仿真结果表明本文所提出的四级调压策略,充分利用了主动配电网内分散的调压资源,有效减少了VQC装置动作次数,并改善了配电网电压水平。  相似文献   

19.
配电网无功电压集中-分布协调控制策略研究   总被引:1,自引:1,他引:0  
提出了一种基于两层无功电压控制模式的配电网无功电压集中-分布协调控制方法,该方法根据控制对象的补偿效果与动作周期的不同,将配电网无功电压控制体系解耦为无功的就地分布补偿与电压的集中优化控制两个层面,建立控制模型并研究了相应的控制策略.最后采用工程算例进行分析验证,计算结果表明所述控制模型与控制策略能够有效降低网损、提高...  相似文献   

20.
为解决新能源大规模接入配电网带来的电压波动及越限问题,提出了一种针对光伏场站及静止无功发生器(static var generator, SVG)接入的配电网系统动态无功电压控制方法,以实现扰动下多无功源协同调压目标。首先,分别推导了光伏场站和SVG的无功-电压控制小信号模型。其次,通过类比等效实现了不同类型无功源电压控制模型形式的统一,并结合系统电压灵敏度关系建立了系统整体电压控制模型。在此基础上考虑系统状态变化对控制参数的影响,并计及各设备无功出力约束,设计了系统模型预测控制器。最后,基于IEEE33节点系统进行仿真,验证了在光伏出力波动和负荷投切两种情况下所提方法均能够快速、有效地抑制电压波动,为有源配电网快速电压协同控制提供了理论基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号