首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 78 毫秒
1.
Cu-SSZ-13催化剂已被证实是高效NH3-SCR催化剂。然而,其经过严重水热老化(950℃)后仍会导致不可逆失活。本文通过考察引入的第二活性金属(Ce)离子浓度对Cu-SSZ-13催化剂的活性位性质及其催化活性的影响,揭示了活性位与催化活性之间的关系。结果表明,Cu-SSZ-13中引入的Ce离子并不会成为NH3-SCR反应的活性中心,而仅起到调节Cu活性位和表面酸性位的位置和数量的作用。通过XPS、H2-TPR、NH3-TPD和活性分析结果可知,低铈负载(约0.2%)下,少量的Ce可进入离子交换位点,有助于稳定SSZ-13骨架结构和抑制CuOx团簇生成的作用(950℃老化后劣化率仅为6%),还能实现高铜负载(Cu负载量为3.01%)与丰富的L酸、B酸位,从而使其具有高的NO转化率、更宽的NO反应温度窗口和优异的水热稳定性。而引入过量的铈离子对Cu-SSZ-13的催化活性和水热稳定性产生不利影响,导致SCR性能下降。  相似文献   

2.
This study explored the superior citrate method(CM)to synthesize Mn-Ce bi-oxides on 3 D monolithic Ni-foam(NF)catalysts for the selective catalytic reduction of NO by NH3(NH3-SCR).The 17 wt%Mn(7)Ce(3)Ox/NF(CM-17)catalyst shows the NOxconversion of 98.7%at 175℃and 90%in the presence of 10 vol%H2 O.It is revealed that the combination of surface-active oxygen(formed by high-level oxygen vacancies)and strongly oxidized Mn4+species promots the Fast-SCR reactions,in which Mn4+species play a leading role in NH3-SCR reaction,and the unsaturated Ni atoms and also Ce3+species promote electron exchange and thus improve the redox performance.The coexistence mechanisms of Fast-SCR reactions and E-R pathways are observed over Mn-CeOx/NF catalyst,which may be promoted by the Br?nsted sites at low temperature.In addition,the heat resistance,stability,3 D monolithic porous structure and excellent physical properties of foam nickel provide a unique growth substrates for catalysts preparation and reaction sites for NOxpurification.Therefore,industrial application of Mn-Ce bioxides loaded on 3 D monolithic is proposed to be achieved through reasonable preparation methods.  相似文献   

3.
利用硫酸预处理白云鄂博稀土尾矿,随后采用浸渍法使其负载5%乙酸锰,经微波焙烧制成脱硝催化剂,考察了硫酸浓度(0、0.5、1、3 mol/L)对催化剂脱硝性能的影响。通过XRD、NH3-TPD、H2-TPR和XPS对催化剂进行了表征。脱硝活性测试结果表明:催化剂在100~250℃的脱硝活性随着硫酸浓度的增加先提高后降低,当硫酸浓度为0.5 mol/L时达到最佳。较高浓度(3 mol/L)的硫酸大幅度降低了催化剂的低温活性。0.5 mol/L硫酸处理的催化剂具有较宽的温度窗口,在150~250℃范围内均有较好的活性,200℃时氮氧化物转化率达到92%。表征结果表明:负载的Mn元素以非晶态存在或高度分散在稀土尾矿表面;随着硫酸浓度的增加,催化剂表面Mn4+的浓度降低,其NH3吸附能力和氧化还原能力均降低,从而脱硝性能降低。  相似文献   

4.
5.
IrOx-based catalysts are considered the most promising candidates for oxygen evolution reaction(OER)due to their high efficiency.However,improving their intrinsic catalytic activity is essential for practical application.In this work,CeO2with three different morphologies(rod,cube,octahedron)and supported IrOx nanoparticles were fabricated,and they display morphology-dependent OER activity.The IrOx/CeO2-rod shows the highest activity;the catalysts have a catalytic activity sequence of rod>cube>octahedron.A plausible mechanism was proposed:the CeO2support with different morphologies modulates the electronic structure of IrOx by the synergistic interaction promoted by oxygen vacancies between the active component and the support,thereby altering the catalytic activity of the IrOx/CeO2catalyst.  相似文献   

6.
Cyan-emitting Ca9NaGd2/3(PO4)7:Eu2+phosphors were synthesized via high temperature solid-state route.X-ray powder diffraction(XRD)and scanning electron microscopy(SEM)were used to verify the phase and morphology of the Ca9NaGd2/3(PO4)7:Eu2+(CNGP:Eu2+)phosphors.The as-obtained phosphor exhibits a broad excitation band of 250-420 nm,which is near the ultraviolet region.An intense asymmetric cyan emission at 496 nm corresponds to the 5 d-4 f transition of Eu2+.The multiplesite luminescent properties of Eu2+ions in CNGP benefit from versatile structure ofβ-Ca3(PO4)2 compounds.The effective energy transfer distance is 5.46 nm(through the spectral overlap calculation),validating that the resonant energy migration type is via dipole-dipole interaction mechanism.Compared to the initial one at room temperature,the luminescent intensity of CNGP:Eu2+phosphor can maintain 77%as it is heated up to 420 K.A white light-emitting diode(WLED)with excellent luminesce nt properties was successfully fabricated.Moreover,the CIE chromaticity coordinates of fabricated WLED driven by changing current just change slightly.  相似文献   

7.
In this study, the promotion effect of H2 pretreatment on the SCR performance of CeO2 catalyst was investigated based on the characterization results of XRD, H2-TPR, Raman and in situ DRIFT techniques. Lower crystallinity, higher reducibility and surface acidity can be found on CeO2-H catalyst. The results of DRIFT study reveal that the pretreatment of CeO2 catalyst with H2 can facilitate the adsorption of NH3 and NOx species, while the adsorbed NOx is basically inactive in the NH3-SCR reaction. Moreover, the reaction mechanism of the NH3-SCR reaction over CeO2 catalyst is not changed by H2 pretreatment, which is mainly under the control of Eley-Rideal (E-R) mechanism. The enhanced SCR performance of CeO2-H catalyst is mainly due to the promoted NH3 adsorption and the subsequent facilitation of SCR reaction through E-R pathway.  相似文献   

8.
SAPO-34,SAPO-5/34 based catalysts doped with Cu,Ce as active components were synthesized via a one-pot hydrothermal method by using different amounts of additive(a-cellulose),and their catalytic activities were measured for selective catalytic reduction(SCR) of NO with NH3.The synthesized Cu-Ce co-doped products switch from cubic SAPO-34,to flower-like aggregated SAPO-5/34,hybrid crystal SAPO-5/34,and finally to spherical aggregated SAPO-34 with the increase of α-cellulose amount.The Cu-Ce co-doped SAPO-5/34 hybrid crystal structure catalysts with 0.75 mol ratios of C/P(Cu-Ce/SP-0.75)exhibit excellent NH3-SCR activity with higher than 90% NO_x conversion in the temperature range of 180-450℃,at WHSV of 20000 mL/(g·h).Furthermore,the catalyst displays outstanding sulfur resistance and NO_X conversion maintains above 90% at 200-450℃ after adding 100 ppm of SO_2.The characteristic results suggest that the high deNO_X performance of Cu-Ce/SP-0.75 is due to the enhanced accessibility,abundant activity species,excellent redox property and high adsorptive and activated capacity for NH3.  相似文献   

9.
A superior Ce-Ta-Sb composite oxide catalyst prepared using homogeneous precipitation method exhibited excellent deNOx efficiency and nearly 100% N_2 selectivity with broad operation temperature window and better resistance to higher space velocity, meanwhile strong resistance to H_2 O and SO_2. This catalyst was systematically characterized using XRD, N_2 adsorption, SEM, TEM, XPS, ESR, Raman, H_2-TPR,NH3-TPD and in situ DRIFTS. There exists a synergistic effect between Ce, Ta and Sb species. It is further indicated that the prominent deNOx performance of the Ce3 Ta3 SbOx catalyst is attributed to the elevated Ce3+ concentrations, abundant active surface oxygen species, as well as surface acidity and reducibility,which is closely linked with the synergistic effect between Ce, Sb and Ta species. Results from DRIFTS reveal that the reaction mechanism of surface-adsorbed NH3 and NO_x species is linked to temperature,the L-H mechanism mainly occurs at low temperature(300 ℃),while the E-R mechanism occurs at high temperature(300 ℃). Overall,these findings indicate that Ce3 Ta3 SbOx is promising for NO_x practical abatement.  相似文献   

10.
The effects of Ho substitution for Nd on the microstructure, corrosion resistance and thermal stability of the Nd-Fe-B magnets were investigated. The(Nd,Ho)-O phase was formed with increasing Ho substitution. The results of potentiodynamic polarization and highly accelerated stress test show improved corrosion resistance with increasing Ho substitution. The optimum mass loss 0.29 mg/cm~2 is achieved.Moreover, the average temperature coefficients for remanence and coercivity in the range of 25-150℃are both closer to zero, indicating improved thermal stability. The mechanisms for the improved corrosion resistance and thermal stability are discussed in relation to the microstructure featuring the(Nd,Ho)-O phase.  相似文献   

11.
Sm and Ho were doped in Ce-Mn/TiO2 catalyst respectively to enhance its denitration performance at low temperature.X-ray diffraction(XRD),N2 adsorption-desorption,X-ray photoelectron spectroscopy(XPS),NH3-temperature programmed desorption(NH3-TPD),H2-temperature programmed reduction(H2-TPR) and in situ diffuse reflectance infrared Fourier transform spectroscopy(DRIFTS) techniques were used to analyze the structure and performance ...  相似文献   

12.
Fe-Ce-OH@AR14 was obtained via the adsorption of acid red 14(AR14) on Fe-Ce-OH prepared by the codeposition of cerium nitrate hexahydrate,ferric nitrate nonahydrate,and ammonia,and then Fe-Ce-O@C with high photocatalyic efficiency was synthesized by the calcination of Fe-Ce-OH@AR14 in N2.For comparison,Fe-Ce-O was also prepared by the calcination of Fe-Ce-OH in N2.The obtained materials were characte rized by X-ray diffraction(XRD),Raman,X-ray photoelectron spectroscopy(XPS...  相似文献   

13.
The effects of La on the catalytic performance,SO2 and H2O resistance of Cu-Ce/TNU-9 catalyst were studied in the selective catalytic reduction of NOx via ammonia(NH3-SCR).The results show that the La doped Ce-Cu/TNU-9(CCL/T9) catalyst exhibits better SCR performance than Ce-Cu/TNU-9(CC/T9) and Cu/TNU-9(C/T9) in the wide temperature window(200-450 ℃) due to La benefiting from enhancing Cu++Ce4+?Cu2+-+Ce3+ to facilitate ...  相似文献   

14.
A series of TiO_2-Al_2 O_3 composites with Al/Ti molar ratios of 0.1,0.2,and 0.4 were synthesized by a coprecipitation method and used as supports to prepare supported MnCeO_x catalysts by an impregnation method.The physico-chemical properties of the samples were extensively characterized by N2 physisorption,X-ray diffraction,Raman spectroscopy,scanning electron micro scopy and energy-dispersive Xray spectroscopy element mapping,X-ray photoelectron spectroscopy,H_2-temperature programmed reduction,ammonia temperature programmed desorption,and in-situ diffuse reflectance infrared Fourier transform spectroscopy.The catalytic activity and resistance to water vapor and SO_2 of the asprepared catalysts for the SCR of NO_x with NH3 were evaluated at 50-250℃ and GHSV of 80000 mL/(g_(cat)·h).The results reveal that MnCeO_x/TiO_2-Al_2 O_3 exhibits higher activity and better SO2 tolerance than MnCeO_x/TiO_2.Combining with the characterization results,the enhanced activity and SO2 tolerance of MnCeO_x/TiO_2-Al_2 O_3 can be mainly attributed to higher relative concentrations of Mn~(4+)and chemisorbed oxygen species,stronger reducibility,and larger adsorption capacity for NH3 and NO,which originate from the larger specific surface area and pore volume,higher dispersion of Mn and Ce species compared with MnCeO_x/TiO_2.Moreover,in situ DRIFTS was used to investigate the reaction mechanism,and the results indicate that the NH3-SCR reaction over MnCeO_x/TiO_2 and MnCeO_x/TiO_2-Al_2 O_3 takes place by both the E-R and L-H mechanisms.  相似文献   

15.
In this paper, a series of Rh/CeO2 catalysts with three-dimensional porous nanorod frameworks and large specific surface area were prepared by chemical dealloying Al–Ce–Rh precursor alloys and then calcining in pure O2. The effects of the Rh content and calcination temperature on CO oxidation and CH4 combustion were studied, and the results reveal that the Rh/CeO2 catalysts produced by dealloying melt-spun Al91.3Ce8Rh0.7 alloy ribbons and then calcining at 500 °C exhibit the best catalytic activity, the reaction temperatures for the complete conversion of CO and CH4 are as low as 90 and 400 °C, respectively. Furthermore, after 150 h of continuous testing at high concentrations of H2O and CO2, the nature of the catalyst is not irreversibly destroyed and can still return to its initial level of activity. This excellent catalytic activity is attributed to a portion of Rh being uniformly distributed on the CeO2 nanorod surface in the form of nanoparticles, forming strong Rh–CeO2 interfacial synergy. Another portion of Rh permeated into the CeO2 lattice, which results in a significant increase in the number of oxygen vacancies in CeO2, thus allowing more surface active oxygen to be adsorbed and converted from the gas phase. Moreover, the catalytic reaction can proceed even in an oxygen-free environment due to the excellent oxygen storage performance of the Rh/CeO2 catalyst.  相似文献   

16.
The selective catalytic reduction(SCR) of NOx with NH3(NH3-SCR) technology has been widely applied for reducing NOx emissions from stationary and mobile sources.In this work,the extruded monolith MnOx-CeO2-TiO2 catalyst was installed in a cement kiln for NH3-SCR of NOx,where the flue gas temperature was 110-140℃.It is found that the monolith catalyst is severely deactivated after operating for abou...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号