共查询到20条相似文献,搜索用时 15 毫秒
1.
针对现有的匿名方案往往较少考虑离群数据的敏感问题以及信息损失与时间效率的最优化问题,提出一种基于约束聚类的k-匿名隐私保护方法.通过K近邻思想划分初始集群,根据设定的阈值δ将集群进行重新划分,划分过程始终遵循信息损失最小化原则,得到每个等价类元组数都在k与2k之间,过程中分类考察准标识符属性并充分考虑离群点对聚类结果的... 相似文献
2.
面向表数据发布隐私保护的贪心聚类匿名方法 总被引:1,自引:0,他引:1
为了防范隐私泄露,表数据一般需要匿名处理后发布.现有匿名方案较少分类考察准标识属性概化,并缺少同时考虑信息损失量和时间效率的最优化.利用贪心法和聚类划分的思想,提出一种贪心聚类匿名方法:分类概化准标识属性,并分别度量其信息损失,有利于减小并合理评价信息损失.对元组间距离和元组与等价类距离,建立与最小合并概化信息损失值正相关的距离定义,聚类过程始终选取具有最小距离值的元组添加,从而保证信息损失总量趋于最小.按照k值控制逐一聚类,实现等价类均衡划分,减少了距离计算总量,节省了运行时间.实验结果表明,该方法在减少信息损失和运行时间方面是有效的. 相似文献
3.
隐私保护已成为个人或组织机构关心的基本问题,k-匿名是目前数据发布环境下实现隐私保护的主要技术之一。鉴于多数k-匿名方法采用泛化和隐匿技术,严重依赖于预先定义的泛化层或属性域上的全序关系,产生很高的信息损失,降低了数据的可用性,提出了一种基于聚类技术的k-匿名算法。实验结果表明,该算法在保护隐私的同时,提高了发布数据的可用性。 相似文献
4.
社交网络中积累的海量信息构成一类图大数据,为防范隐私泄露,一般在发布此类数据时需要做匿名化处理.针对现有匿名方案难以防范同时以结构和属性信息为背景知识的攻击的不足,研究一种基于节点连接结构和属性值的属性图聚类匿名化方法,利用属性图表示社交网络数据,综合根据节点间的结构和属性相似度,将图中所有节点聚类成一些包含节点个数不小于k的超点,特别针对各超点进行匿名化处理.该方法中,超点的子图隐匿和属性概化可以分别防范一切基于结构和属性背景知识的识别攻击.另外,聚类过程平衡了节点间的连接紧密性和属性值相近性,有利于减小结构和属性的总体信息损失值,较好地维持数据的可用性.实验结果表明了该方法在实现算法功能和减少信息损失方面的有效性. 相似文献
5.
6.
《软件工程师》2017,(12):12-15
随着移动定位技术的发展,大量移动轨迹数据使信息泄露于公开的互联空间中,使攻击者可以通过计算推理挖掘轨迹信息。轨迹数据发布的隐私保护是近年来网络空间安全领域研究的热点问题。为了防止该类轨迹数据隐私的泄露,通常采用k-匿名技术实现轨迹的隐私保护。该技术在国内外研究中取得了一定的成果。本文阐述了轨迹隐私保护的相关定义及研究方法,对国内外移动轨迹数据k-匿名隐私保护研究的成果进行了总结,并介绍了国内外有关轨迹数据k-匿名隐私保护研究的相关技术。同时对国内外的技术进行了比较,详细叙述了国外与国内各自方法的优点,指出了研究中存在的不足与今后研究的大致方向。 相似文献
7.
针对链接攻击导致的隐私泄露问题,以及为了尽可能减少匿名保护时产生的信息损失,提高发布数据集的可用性,提出一种面向个体的基于变长聚类的个性化匿名保护方法。该方法充分考虑记录权重值对聚类簇中心结果的影响,以提高数据的可用性,并对敏感属性值进行分级处理,将敏感属性值分成三个等级类,响应不同个体的保护需求。理论分析和实验结果表明,该方法能满足敏感属性个性化保护需求,同时可有效地降低信息损失,效率较高,生成的匿名数据集具有较好的可用性。 相似文献
8.
匿名化是目前数据发布环境下实现隐私保护的主要技术之一。阐述了匿名化技术的一般概念和基本原理,并从匿名化原则、匿名化方法和匿名化度量等方面对匿名化技术进行了总结,最后指出匿名化技术的研究难点以及未来的研究方向。 相似文献
9.
10.
11.
当前网络公开数据中的隐私泄露问题频出,给相关个人造成不良影响甚至严重危害,隐私保护技术研究因此越来越受到关注。k-匿名化作为一种能够有效保护隐私信息的技术,已发展了多种算法,但这些算法有的数据处理效率较低、有的抗攻击性能较弱。文章采用K-means算法并结合运用Mondrian算法进行聚类处理,建立了一种基于K-means的(k,e)匿名隐私保护的改进算法。不仅与具有代表性的隐私保护算法(k,e)-MDAV算法进行了运算效率的对比,还利用改进算法进行了涉及个人位置信息的应用案例分析。结果表明,文章提出的改进算法在实现数据匿名化基础上,能有效提高运行效率,且具有较强的抗链接攻击和抗同质化攻击性能。 相似文献
12.
聚类匿名是一种典型的社交网数据发布隐私保护方案,其基础工作是图聚类.图聚类为一类NP难的组合优化问题,便于使用搜索优化算法.现有图聚类匿名方法缺少此类启发式搜索算法.为此,研究一种利用遗传算法实现的图聚类匿名方法,利用贪心法进行结点聚类预划分,以构造初始种群;依据关系拟合理论建立个体适应度函数;根据个体编码特点,分别提出一种多点错位的交叉算子和基因位交换的变异算子.图聚类模型综合考虑了结点的结构和属性信息,而遗传算法的全局化搜索优化能力保障了图聚类质量,因此,该方法具有较强的隐私保护性.实验表明了该方法在提高聚类质量和减小信息损失方面的有效性. 相似文献
13.
14.
匿名化隐私保护技术研究综述 总被引:5,自引:0,他引:5
随着互联网技术的迅猛发展,隐私保护已成为个人或机构关心的基本问题,各种数据挖掘工具的出现使得隐私泄露问题日益突出.通常移除标识符的方式发布数据是无法阻止隐私泄露的,攻击者仍然可以通过链接操作以很高的概率来获取用户的隐私数据.匿名化是目前数据发布环境下实现隐私保护的主要技术之一.论文简要介绍了匿名化技术的相关概念和基本原理,主要从匿名化原则、匿名化方法和匿名化度量等方面对匿名化技术研究现状进行了深入分析和总结,最后指出匿名化技术的研究难点以及未来的研究方向. 相似文献
15.
为提高匿名化后数据的可用性,给出了一种加权确定惩罚模型作为数据有用性的度量方法,提出了两种基于局部聚类的数据匿名化算法。通过真实数据实验评估,该算法能够很好地降低实现匿名保护时概化处理所带来的信息损失。 相似文献
16.
基于杂度增益与层次聚类的数据匿名方法 总被引:2,自引:0,他引:2
数据匿名是发布数据时对隐私信息进行保护的重要手段之一.对数据匿名的基本概念和应用模型进行了介绍,探讨了数据匿名结果应该满足的要求.为了抵制背景知识攻击,提出了一种基于杂度增益与层次聚类的数据匿名方法,该方法以杂度来度量敏感属性随机性,并以概化过程中信息损失最小、杂度增益最大的条件约束来控制聚类的合并过程,可以使数据匿名处理后的数据集在满足k-匿名模型和l-多样模型的同时,使数据概化的信息损失最小且敏感属性的取值均匀化.在实验部分,提出了一种对数据匿名结果进行评估的方法,该方法将匿名结果和原始数据进行对比,并从平均信息损失和平均杂度2个方面来评估数据匿名的质量.实验结果验证了以上方法的有效性. 相似文献
17.
18.
由于移动网络低安全等特性,导致移动数据库中与用户隐私相关的字段处在一种可能会被披露的状态,如何实现高效可靠地隐私保护是当前移动数据库中一个主要的研究方向。其中k-匿名技术已被证明是一种可靠地数据查询发布技术,在文中,我们在移动数据库引入k-匿名技术从而对数据库中用户的相关数据或敏感数据进行保护,以防止具有知识背景下的隐私披露。实验证明具有一定的有效性,时间复杂度也在可控的O(k)级别,比较高效。 相似文献
19.
20.
《计算机科学与探索》2018,(5):761-768
随着移动医疗的飞速发展,医疗机构在共享个人医疗数据的同时也存在着隐私泄漏的隐患。基于k-匿名和l-多样性模型,提出利用个性化熵l-多样性隐私保护模型来细粒度地保护用户的隐私,通过区分强弱敏感属性值来提高对敏感属性的约束,降低敏感信息及强信息的泄漏概率,从而达到医疗数据共享安全。通过数据分析及实验结果表明,该方法在提高数据精度的同时可以减少执行时间,而且能提高服务质量,比既有的方案更有效。 相似文献