首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
李丹  王重洋  杨龙 《红外》2016,37(2):36-41
为了探索不同树种叶片光谱区分的最佳特征波段以及不同树种光谱分类的 性能,利用地物光谱仪对广东省10个主要人工林树种的叶片光谱数进行了采集。采用遗 传算法(Genetic Algorithm, GA)和连续投影变换算法(Successive Projections Algorithm, SPA) 进行了高光谱数据降维处理,然后结合支持向量机(Support Vector Machine, SVM)和随机森林(Random Forest, RF) 两种方法进行了树种分类。研究发现,通过两种变量选择方式筛选的用于树种分类的光谱范围 主要位于近红外波段。其中,经GA算法筛选的变量建模和预测精度与基于全波段光谱数据的分类精 度较为接近,且比经SPA算法变量筛选的分类结果好。通过比较可知,RF算法所建模型的性能比SVM算 法更稳定,且GA-RF算法在几种分类处理中的性能最好。结果表明,GA-RF算法 可用于基于光谱数据的树种分类研究。  相似文献   

2.
高光谱激光雷达综合了高光谱和激光雷达特征,可为植被生理生化参数提取提供更加精确的遥感探测,但其应用潜力尚未得到充分挖掘。以北京10个典型树种的单叶为样本,开展室内高光谱激光雷达的叶片观测试验,并进行树种分类研究,为未来高光谱激光雷达的林业应用提供基础。首先进行可调谐高光谱激光雷达(Hyperspectral LiDAR,HSL)叶片高光谱测量,并完成与ASD地物光谱仪所测数据对比实验;其次,应用随机森林方法实现10种叶片的分类研究,其输入的特征指数为融合全部波段、部分敏感波段的光谱指数。结果表明:(a)HSL在波段650~1000 nm (71个通道)内观测的叶片高光谱和ASD光谱一致(R~2=0.9525~0.9932,RMSE=0.0587);(b)只用原始波段反射率分类精度为78.31%,其中分类贡献率最大波段的是650~750 nm,使用此波段进行分类精度为94.18%,表明利用红边波段(650~750nm)进行树种分类是十分有效的;(c)对树种敏感的波段为680 nm、685 nm、690 nm、715 nm、720 nm、725 nm、730 nm;(d)结合敏感波段光谱指数与植被指数分类精度82.65%。该研究结果表明在单叶级别,利用高光谱激光雷达能够准确地反映目标叶片的光谱特征并且能有效进行树种分类;未来将可能在野外应用中精确提取目标的生理生化参数。  相似文献   

3.
倪宏宇  李禄  姚威  李伟  陶然 《激光与红外》2023,53(2):313-320
高光谱遥感图像虽然具有较高的光谱分辨率,但只能提供二维光谱信息,而激光雷达(Light Detection and Ranging,LiDAR)可以提供可靠的三维数据和森林的冠层特征,二者结合能够优势互补,协同提高地物分类能力。基于此,本文提出了一种利用高光谱和机载激光雷达数据进行树种识别的方法,探讨了二者协同对树种精细分类的影响,最后通过公开数据的实验来验证方法的有效性。结果表明,高光谱和激光雷达数据结合后,树种分类精度得到了显著提高。通过本文提出的方法,即使使用少量特征也能大大提高分类精度。整体分类准确率最高达到9321,比单个高光谱数据的分类准确率提高931。  相似文献   

4.
塑料因其可塑性与低成本在日常生活与工业中被广泛使用,然而这也带来环境污染与资源浪费等问题,因此塑料分类成为重要研究课题。为验证高光谱成像技术在塑料分类中的可行性,采用近红外高光谱成像技术(NIR-HSI),比较了1100~1650 nm波段数据在9种常见塑料分类中的效果。涵盖K邻近法(K-NN)、支持向量机(SVM)、粒子群算法训练的SVM(PSO-SVM)、遗传算法优化的SVM(GA-SVM)等机器学习方法。通过验证数据筛选模型准确率后,将其应用于高光谱图像,通过可视化分类对比原始图像评估模型效果。结果显示,基于欧氏距离、余弦相似度的K-NN和GASVM分类效果最佳,验证数据的精度分别达到96.14%、96.21%和98.67%,在可视化分类上也呈现出良好效果。高光谱成像技术在塑料分选中具有很高的应用价值,只需获取特定塑料的光谱数据并进行适当处理,即可对不同颜色、形状、工艺的同类塑料制品进行有效区分。  相似文献   

5.
6.
杨新锋  胡旭诺  粘永健 《红外与激光工程》2016,45(2):228003-0228003(4)
高光谱图像庞大的数据量给存储与传输带来巨大挑战,必须采用有效的压缩算法对其进行压缩。提出了一种基于分类的高光谱图像有损压缩算法。首先利用C均值算法对高光谱图像进行无监督光谱分类。根据分类图,针对每一类数据分别采用自适应KLT(Karhunen-Love transform)进行谱间去相关;然后对每个主成分分别进行二维小波变换。为了获得最佳的率失真性能,采用EBCOT(Embedded Block Coding with Optimized Truncation)算法对所有的主成分进行联合率失真编码。实验结果表明,所提出算法的有损压缩性能优于其它经典的压缩算法。  相似文献   

7.
8.
9.
近年来,图卷积网络因其特征聚合的机制,能够同时对单个节点以及近邻节点的特征进行表示,被广泛应用于高光谱图像的分类任务。然而,高光谱图像(HSI)中常存在波段冗余、同物异谱等问题,使得直接利用原始光谱特征构建的初始图可靠性不足,从而导致高光谱图像的分类精度低。为此,该文提出一种基于光谱注意力图卷积网络(SAGCN)的高光谱图像半监督分类方法。首先,利用注意力模块对光谱的局部与全局信息进行交互,以增加重要光谱的权重、减小冗余波段以及噪声波段的权重,从而实现光谱的自适应加权;然后,针对光谱加权处理后的高光谱图像,通过空间-光谱相似性度量构建更为准确的近邻矩阵;最后,通过图卷积对标记和无标记样本进行有效的特征聚合,并使用标记样本的聚合特征训练网络。在Indian Pines, Kennedy Space Center和Botswana 3个真实高光谱图像数据集上的实验结果验证了所提方法的有效性。  相似文献   

10.
近年来高光谱遥感技术迅速发展,高光谱图像分类是遥感领域中的热点研究方向.传统的光谱-空间分类框架,将光谱特征提取与空间特征提取分开进行,忽略了二者之间的相关性,导致分类精度不佳.文中提出基于光谱-空间一致性正则化的高光谱图像分类方法,建立长短期记忆神经网络(LSTM)和八度卷积(Octave Convolution)两...  相似文献   

11.
殷岳萌  冯燕  刘萌萌 《现代电子技术》2010,33(13):123-126,130
提出一种独立分量分析(ICA)和相关向量机(RVM)相结合的高光谱数据分类方法,首先采用虚拟维数方法对高光谱数据维数进行估计,在此基础上,采用独立分量分析对数据进行降维,然后采用相关向量机对降维后的数据分类。计算机仿真实验结果表明,该方法在获得较高分类精度的同时大大节省了分类时间。  相似文献   

12.
由于高光谱图像存在较高的数据维数,会给分类过程带来一些困难。为了提高分类的准确率,提出了一种使用3D卷积联合注意力机制的高光谱图像分类方法。首先,将中心像素与周围相邻的其它像素进行配对,可以通过配对构成多组新的像素对,充分利用了像素之间的邻域相关性。接着,将像素对放入3D卷积联合注意力机制网络框架中进行分类,它能够对高光谱图像中的特征进行选择性的学习。最后,通过投票策略获得像素标签。实验是在两个真实的高光谱图像数据集上进行。结果表明,所提出的方法充分挖掘了高光谱图像的光谱空间特征,能有效地提高分类精度。  相似文献   

13.
基于SSMFA与kNNS算法的高光谱遥感影像分类   总被引:2,自引:0,他引:2       下载免费PDF全文
王立志  黄鸿  冯海亮 《电子学报》2012,40(4):780-787
 为了研究高光谱影像数据的维数约简和分类问题,提出了一种基于半监督边际费希尔分析(SSMFA)和kNNS的高光谱遥感影像数据分类算法.该方法利用有标记数据和无标记数据的信息获得数据的内在流形结构,通过SSMFA将高光谱数据从高维观测空间投影到低维流形空间,然后利用邻域内多个近邻点的信息通过kNNS分类器对低维空间中的数据进行分类.在Urban、Washington和Indian Pine数据集上的分类识别实验表明,该方法能够较为有效地发现高维空间中数据的内蕴结构,在每类随机选取4,6,8个有类别标记的样本10个无类别标记的样本的情况下,该方法的总体分类精度能够比MFA+kNNS提高0.8%~2.5%,比MFA+kNN提高2.8%~4.5%,比其他算法提高4.0%~7.0%,分类精度有了明显的提高.  相似文献   

14.
15.
高光谱图像中包含丰富的光谱特征和空间特征,这对地表物质的分类至关重要.然而高光谱图像的空间分辨率相对较低,使得图像中存在大量的混合像素,这严重制约物质分类的精度.受到观测噪声、目标区域大小及端元易变性等因素的影响,使得高光谱图像的分类仍然面临诸多挑战.随着人工智能和信息处理技术的不断进步,高光谱图像分类已成为遥感领域的...  相似文献   

16.

类属属性学习避免相同属性预测全部标记,是一种提取各标记独有属性进行分类的一种框架,在多标记学习中得到广泛的应用。而针对标记维度较大、标记分布密度不平衡等问题,已有的基于类属属性的多标记学习算法普遍时间消耗大、分类精度低。为提高多标记分类性能,该文提出一种基于标记密度分类间隔面的组类属属性学习(GLSFL-LDCM)方法。首先,使用余弦相似度构建标记相关性矩阵,通过谱聚类将标记分组以提取各标记组的类属属性,减少计算全部标记类属属性的时间消耗。然后,计算各标记密度以更新标记空间矩阵,将标记密度信息加入原标记中,扩大正负标记的间隔,通过标记密度分类间隔面的方法有效解决标记分布密度不平衡问题。最后,通过将组类属属性和标记密度矩阵输入极限学习机以得到最终分类模型。对比实验充分验证了该文所提算法的可行性与稳定性。

  相似文献   

17.
主成分分析是一种应用广泛的线性降维技术,它在保留住数据的重要成分的同时达到了对数据的降维。对高维、多属性的飞参数据进行主成分分析,可以实现飞参的降维。支持向量机的学习方法则以其全局最优和泛化能力好的特.最,实现对飞参阶段的划分。使用主成分分析后的数据进行阶段划分可以提高划分速度,并且划分效果更好。  相似文献   

18.
在遥感数据处理研究中,高维高光谱数据的冗余信息和噪声严重影响高光谱数据的分类精度,针对此问题提出基于互信息波段选择和经验模态分解的高精度高光谱数据分类算法(MI-EMD-SVM).分别采用基于互信息波段选择方法和经验模态分解实现对高光谱数据的冗余信息处理和特征提取,并获得处理后的高光谱数据X'.采用支持向量机分类算法...  相似文献   

19.
目前,高光谱植被精细分类存在三个问题:单纯利用光谱信息得到的分类精度较低;光谱数据存在噪声影响了最终的分类结果; 缺少针对具体应用场景而设计的分类方法。为此,提出了一种基于高光谱影像多维特征的植被精细分类方法,通过光谱 数据降维、纹理特征提取以及植被指数选择三个方面对高光谱影像数据进行分析与利用,依靠前期现场调查得到的地面 植被分布情况,选择训练样本并进行支持向量机(Support vector machine, SVM)监督分类,完成地面植被的精细分类, 对分类结果进行验证,总体精度可达99.6\%。结果表明,基于高光谱影像多维特征的植被分类方法能够有效地减小数据噪声、 提高信息利用率,为植被生态监测提供更为准确的数据支撑。  相似文献   

20.
张景祥  王士同 《电子学报》2015,43(7):1349-1355
多源迁移学习提取了多个相似领域之间有用信息,提高了学习效率,但存在计算核矩阵的空间和时间复杂度较高的问题.提出了一种多源迁移学习方法,该方法基于结构风险最小框架理论,以共同决策方向矢量为基准,将多个相似领域的决策方向矢量嵌入到支持向量机的训练过程中,提高了目标领域分类器的分类性能.并结合核心向量机理论提出了共同决策方向矢量核心向量机,实现对大样本数据集的快速分类学习.模拟和真实数据集实验表明了所提算法的有效性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号