共查询到16条相似文献,搜索用时 78 毫秒
1.
运动想象(MI)脑电信号本身是由一组较长且连续的特征值组成的信号序列,传统Transformer模型无法捕捉较长序列之间的依赖,设置固定长度的序列又会产生碎片化问题,因此有待进一步调整和优化。针对上述问题,在传统Transformer模型中加入了片段重用的循环机制和重用之前片段信息的相对位置编码机制,使Transformer模型能够学习更长特征序列的特征信息,同时解决重用片段之间的位置编码信息错乱和重用等问题。然后,通过并行多分支CNN进一步捕捉脑电局部特征。最后,利用竞赛数据集2008 BCI-Competition 2A对改进的Transformer模型性能进行评估。结果表明,在不做任何人工特征提取的前提下,对于四分类数据集,改进Transformer模型的平均准确率和kappa值分别为94.27%和87.34%。 相似文献
2.
为提升迁移学习在运动想象脑机接口应用过程中的迁移高效性及普适性,综合实例迁移和特征迁移学习方法的优势进而构建了混合迁移学习模型。首先,依据样本权重极化原理改进TrAdaBoost算法以实现实例层面的迁移,优化源域训练样本;其次,基于大间隔投射迁移支持向量机进一步缩短源域与目标域间的分布距离以完成特征层面的迁移,实现迁移效率最大化。进一步,将该方法应用于脑机接口竞赛Dataset IIb数据集进行离线测试及分析,研究结果表明混合迁移学习模型的迁移效率明显高于单一迁移学习模型,并且对于不同迁移对象识别准确率相对提升均值在70%以上,验证了所述方法的有效性与普适性。此外,基于已搭建的运动想象识别系统进行在线测试,验证了模型的实用性。 相似文献
3.
4.
杜义浩常超群杜正张延夫曹添福范强谢平 《计量学报》2023,(11):1740-1748
利用迁移学习算法提高分类识别的准确率是运动想象脑机接口应用的热点研究问题,其中样本迁移和特征迁移的传统模型算法在样本量较少或源域数据和目标域数据差异较大情况时,各自的迁移效果并不理想。基于欧式对齐(EA)和改进联合类质心匹配和局部流形自学习(CMMS)迁移学习的运动想象分类算法,将样本迁移和特征迁移的优势有机结合,在考虑样本本身的同时,进一步提高了分类准确率。首先,对样本进行源域和目标域的EA,减少源域和目标域的数据分布差异;其次,基于最小化最大均值差异(MMD)改进CMMS方法,筛选源域数据,再次减小源域样本与目标域的分布差异;最后,将该方法应用于BCI竞赛数据集进行离线测试和在线实验。实验结果表明:所研究的方法与SVM、JDA、BDA、EasyTL、GFK、CMMS相比较,迁移学习模型的识别准确率分别提高了14.38%,8.5%,5.8%,10.4%,11.8%,5.7%。 相似文献
5.
在对脑电信号的解码研究中,存在着现有时频分析方法对高频信号处理能力有限,多通道信号信息冗余,常用卷积神经网络分类器ReLU激活函数受学习速率的影响较大,对不同层采用相同的正则化很难获得满意结果等问题。为此,提出了一种基于广义S变换特征提取和增强卷积神经网络分类相结合的方法,同时提出一种结合Relief算法和向前选择搜索策略的包裹式方法进行通道选择。结果表明,提出的方法利用较少的信号通道,具有更强的特征提取和分类的能力,在第Ⅳ届BCI的数据集I上取得最高98.44±1.5%的分类准确率,高于其他现有算法。该方法良好的分类性能不仅减少了计算消耗,也有效提高了分类准确率,对脑电信号特征提取和分类具有一定的参考意义。 相似文献
6.
传统人工确定最优时段及最优频段的方法会造成信息遗漏进而导致运动想象识别率的降低, 因此基于脑电信号的运动想象分类研究成为了脑-机接口研究领域的难点问题。针对该问题,变分模态分解和深度信念网络被应用于运动想象分类。对脑电信号进行变分模态分解得到窄带分量,利用希尔伯特变换提取边际谱、特征频带下的瞬时能谱以及时-频联合特征; 特征融合后采用深度信念网络对高维特征降维并实现运动想象模式的识别, 避免了人工确定想象最优时段及最优频段造成的信息遗漏。实验结果表明,利用变分模态分解与深度信念网络自动提取最优时段及最优频段特征的方法有效提升了运动想象识别率。 相似文献
7.
为了提高运动想象脑机接口任务分类的准确性,需要增强运动想象脑电信号的解码精度。利用脑电的空间分布及多导联信息关联,构建图神经网络,提出了一种基于残差图卷积的运动想象任务分类模型。将残差学习嵌入深度图卷积神经网络,改善网络退化;并将分层图池化方法加入模型,充分提取运动想象脑电特征信息,提高分类准确率。该模型在两个脑机接口竞赛数据集上分别取得93.84%和96.39%的平均分类准确率以及0.9171和0.9535的平均Kappa系数。仿真结果表明,模型能有效提高运动想象脑机接口任务分类精度,且具有较好的泛化能力。 相似文献
8.
线性压电马达的动态模拟与性能评估 总被引:1,自引:0,他引:1
提出了一个模拟线性压电马达运动特性的动态模型.该模型考虑了马达压电元件的运动顺序,将压电马达视为一个具有变接触刚度与变阻尼系数的两自由度动态系统.其本构方程考虑了压电元件的机-电耦合效应.该模型使用Co-quad图、波特图和根轨迹图进行表述以及实验验证.结果表明,该模型能够预测线性压电马达的运动特性,并可用于改进或设计新的线性压电马达.性能评估表明,实验中使用的线性压电马达具有5 nm的分辨率、20mm/s的行走速度以及220 N的驱动力. 相似文献
9.
在两维空间中,当关键质量特性之间存在相关关系并且预定义故障类之间重叠时,传统的模糊聚类算法FCM对双故障并发的识别率会下降。为了提升对重叠并发双故障的识别率,一种新算法PILDA被提出,该算法提出的主成分修整能够消除重叠的影响,而双故障判别区间确定的方法则能够实现对未预定义的并发双故障的识别。经过864种不同相关关系和均值偏移量的故障组合仿真实验,结果表明PILDA能有效识别并发故障及预定义单发故障,平均识别率为84.94%,明显高于FCM的58.13%。该方法具有一定的应用价值。 相似文献
10.
为了实现脑机接口系统需要有效的特征提取算法。针对二维主成分分析(2DPCA)的特征提取方法忽略脑电信号(EEG)频域特征的缺点和基于小波分解构建EEG高阶张量时小波参数难以确定的局限性,提出了基于集合经验模态分解(EEMD)构建高阶张量结合多线性主成分分析(MPCA)降维的特征提取方法。设计了3种不同特征提取方法的对照实验,并结合Fisher线性判别分析分类方法取得分类准确率。结果表明:新提出的方法相比基于小波分解构建高阶张量结合MPCA进行降维和2DPCA的特征提取方法,平均识别准确率分别提高4.75%和2.6%,且识别准确率的方差分别减小72.69%和23.86%。该方法在提高单次运动想象脑电信号识别准确率的同时还具有更好的适用性,为实现运动想象脑电信号解码奠定了基础。 相似文献
11.
一种多频带线性鉴别分析方法 总被引:1,自引:0,他引:1
线性鉴别分析(LDA)是模式识别领域广泛使用的一种特征抽取方法,而在图像识别中,由于小样本问题,经常采用的是PCA LDA方法来代替单纯的LDA.提出了一种多频带线性鉴别分析方法(MBLDA),使LDA在完整的样本空间上进行,而且解决了小样本问题.MBLDA不仅避免了PCA过程带来的信息损失,而且提取的鉴别特征维数小,还提高了识别性能.该方法在识别精度上大幅度地超越了PCA和LDA或PCA LDA,通过对ORL,NUST603人脸库的实验验证了该算法的有效性. 相似文献
12.
13.
二维线性鉴别分析(2DLDA)是一种直接基于矩阵的特征提取方法,跳过传统的基于Fisher鉴别准则
的线性鉴别分析方法中必须先将二维矩阵转化成一维矢量的过程,有效地提高了特征提取速度且避免了小样本
问题,其识别率优于传统的Fisherface方法。结合模糊集理论,提出了一种新的2DLDA算法———模糊2DLDA
(F1DLDA)算法。首先采用FKNN算法得到相应的样本分布信息,并按其对最后得到的特征向量所作的贡献融入
到特征抽取过程中,得到有效的样本特征向量集。实验表明,F2DLDA算法的性能优于传统的2 相似文献
14.
利用随机矩阵相乘是最近提出的一种求解零空间线性鉴别分析的算法,但是此算法需要对一个n×n的矩阵进行特征值分解(n指的是训练样本数),使得其算法复杂度依然较高。为了进一步提高零空间线性鉴别分析算法的求解速度,本文提出了一种新的利用随机矩阵相乘的求解零空间线性鉴别分析的快速算法。本文的算法不需要对n×n的矩阵进行特征值分解,使得其算法复杂度比现有的零空间线性鉴别分析求解算法要低得多。理论分析和在人脸数据库上的实验表明,本文算法的计算速度远比现有的零空间线性鉴别分析求解算法要快,但是其识别率与现有的零空间线性鉴别分析求解算法相同。 相似文献
15.
16.
线性判别分析法在塑料食品包装容器溶出物的风险聚类分析中的应用 总被引:1,自引:1,他引:1
报道了为考察塑料食品包装容器蒸发残渣因不同材料造成的质量差异,并对不同材质蒸发残渣指标进行风险聚类,提高检测针对性的方法.对塑料食品包装容器在水、乙酸、乙醇、正己烷浸泡条件下的蒸发残渣含量进行测定,使用四分位稳健统计描述来表征不同使用条件下的溶出风险,使用线性判别法分析对不同材质塑料包装容器蒸发残渣进行了风险聚类分析.结果表明:包装容器的油性溶出风险最高,水的溶出风险最低;包装容器蒸发残渣含量水平可基本划为两类,即"PET-PP-PE"类与"PS-其它类";采用适合的数据描述及多元统计分析方法,可有效地加强食品包装风险监控力度,提高监控效率. 相似文献