共查询到17条相似文献,搜索用时 140 毫秒
1.
DNA微阵列技术可以同时检测细胞内成千上万的基因的活性,被广泛应用于重大基因疾病的临床诊断。然而微阵列数据通常具有高维小样本特点,且存在大量噪声和冗余基因。为了进一步提高微阵列数据分类性能,提出一种特征基因混合选择算法。首先采用ReliefF算法剔除大量无关基因,获得特征基因候选子集;然后采用基于差分进化算法优化的邻域粗糙集模型实现特征基因选择;最后利用支持向量机进行分类,以验证算法的有效性。仿真实验结果表明,该算法能用尽可能少的特征基因来获得更高的分类精度,既增强了算法的泛化性能,又提高了时间效率,而且对致病基因的临床诊断有着重要的参考意义。 相似文献
2.
分类问题普遍存在于现代工业生产中。在进行分类任务之前,利用特征选择筛选有用的信息,能够有效地提高分类效率和分类精度。最小冗余最大相关算法(mRMR)考虑最大化特征与类别的相关性和最小化特征之间的冗余性,能够有效地选择特征子集;但该算法存在中后期特征重要度偏差大以及无法直接给出特征子集的问题。针对该问题,文中提出了结合邻域粗糙集差别矩阵和mRMR原理的特征选择算法。根据最大相关性和最小冗余性原则,利用邻域熵和邻域互信息定义了特征的重要度,以更好地处理混合数据类型。基于差别矩阵定义了动态差别集,利用差别集的动态演化有效去除冗余属性,缩小搜索范围,优化特征子集,并根据差别矩阵判定迭代截止条件。实验选取SVM,J48,KNN和MLP作为分类器来评价该特征选择算法的性能。在公共数据集上的实验结果表明,与已有算法相比,所提算法的平均分类精度提升了2%左右,同时在特征较多的数据集上能够有效地缩短特征选择时间。所提算法继承了差别矩阵和mRMR的优点,能够有效地处理特征选择问题。 相似文献
3.
不平衡数据集上的Relief特征选择算法 总被引:1,自引:0,他引:1
Relief算法为系列特征选择方法,包括最早提出的Relief算法和后来拓展的ReliefF算法,核心思想是对分类贡献大的特征赋予较大的权值;特点是算法简单,运行效率高,因此有着广泛的应用。但直接将Relief算法应用于有干扰的数据集或不平衡数据集,效果并不理想。基于Relief算法,提出一种干扰数据特征选择算法,称为阈值-Relief算法,有效消除了干扰数据对分类结果的影响。结合K-means算法,提出两种不平衡数据集特征选择算法,分别称为K-means-ReliefF算法和
K-means-Relief抽样算法,有效弥补了Relief算法在不平衡数据集上表现出的不足。实验证明了本文算法的有效性。 相似文献
4.
作为数据挖掘领域中一项重要的数据预处理技术,特征选择算法能够有效应对高维数据带来的“维数灾难”问题.然而,如何对高维的混合数据进行特征选取仍然是当前研究的重点和难点之一.基于邻域关系的邻域粗糙集模型因其能够处理名词型属性与数值型属性并存的混合数据,已成功应用于混合数据的特征选择.但是,现有邻域粗糙集对混合数据邻域关系的度量,仍然是基于等价关系的名词型数据划分与基于相似关系的数值型数据划分的简单融合,在利用模型划分的邻域空间和预定义的评价函数对高维混合数据进行特征选取时,适应性较差.为此,在邻域粗糙集模型的基础上,提出一种改进的邻域空间构造方法,并设计相应的邻域空间度量公式作为判别指标,自适应地调节邻域空间下邻域粒的大小;为了准确地表征高维混合数据邻域空间的判别能力,设计一种考虑边界数据和邻域空间大小的评价函数;在此基础上,提出一种启发式的高维混合数据特征选择算法.通过UCI标准数据集验证所提出算法的有效性. 相似文献
5.
针对标签排序问题的特点,提出一种面向标签排序数据集的特征选择算法(Label Ranking Based Feature Selection, LRFS)。该算法首先基于邻域粗糙集定义了新的邻域信息测度,能直接度量连续型、离散型以及排序型特征间的相关性、冗余性和关联性。然后,在此基础上提出基于邻域关联权重因子的标签排序特征选择算法。实验结果表明,LRFS算法能够在不降低排序准确率的前提下,有效剔除标签排序数据集中的无关特征或冗余特征。 相似文献
6.
1.引言特征属性选择(feature attribute selection,FAS)是机器学习和模式识别中比较困难而又非常有意义的一个问题。FAS问题是从一个大的侯选属性集合中选择一个较好的、有代表性的属性子集。由于在实际应用中,过多的属性会严重影响归纳学习的质量,一些不必要的属性会加大训练数据量,影响学习速度,损害所生成规则的精度,因此FAS是一个有实际意义的问题。 相似文献
7.
为了成功将土地覆盖进行分类,选择合适的特征是至关重要的。针对利用MODIS数据进行宏观土地覆盖的分类问题,对三种典型的特征选择方法进行了比较研究。研究结果表明:分支定界法(BB)最适合于该土地覆盖分类问题,与此同时,ReliefF和mRMR方法在目标应用中的精度非常接近。研究结果同样表明进行特征选择是非常必要的,它不仅能够大大地降低计算复杂度,而且分类精度能够保持不变,甚至更高。 相似文献
8.
《计算机应用与软件》2017,(7)
针对Relief F算法局限于单标签数据问题,提出两种多标签特征选择算法Mult-Relief F和M-A算法。Mult-Relief F算法重新定义了类内最近邻和类外最近邻的查找方法,并加入标签的贡献值更新特征权重公式。MA算法在Mult-Relief F算法的基础下,利用邻域能去除冗余的特性,更多地去除冗余特征达到更好的降维效果。采用ML-KNN分类算法进行实验。在多个数据集上测试表明,Mult-Relief F算法能提高分类效果,M-A算法能获得最小的特征子集。 相似文献
9.
10.
特征基因选择在微阵列数据分析中占据着非常重要的作用,好的特征选择方法是提高基因表达数据的分类精度与分类速度的关键之一.联系蚁群算法和粗糙集理论在微阵列数据处理上的优势,文中结合粗糙集理论,对蚁群优化算法模型进行了改进,并将粗糙集的属性依赖度和属性重要度应用到蚁群算法的路径选择及评估中,提出一种新的基因选择方法.该方法实现简单,并可以比较快速地获得最优解,最终选择出较小的并且分类性能较强的特征基因子集.通过对基因数据集的仿真实验表明,该算法是有效可行的. 相似文献
11.
基于邻域粗糙集的多标记分类特征选择算法 总被引:4,自引:0,他引:4
多标记学习是一类复杂的决策任务,同一个对象可能同时属于多个类别.此类任务在文本分类、图像识别、基因功能分析等领域广泛存在.多标记分类任务往往由高维特征描述,存在大量无关和冗余的信息.目前已经提出了大量的单标记特征选择算法以应对维数灾难问题,但对于多标记的属性约简和特征选择却鲜有研究.将粗糙集应用于多标记数据的特征选择中,针对多标记分类任务,重新定义了邻域粗糙集的下近似和依赖度计算方法,探讨了这一模型的性质,进而构造了基于邻域粗糙集的多标记分类任务的特征选择算法,并给出了在公开数据上的实验结果.实验分析证明算法的有效性. 相似文献
12.
13.
彭佳红 《计算机工程与科学》2005,27(11):57-58
本文在基于粗糙集理论的最小差异表MDL上,使用增量方式构造了与MDL相类似的简单差异矩阵SDM,以SDM近似约简集为起点对属性子集空间进行前向搜索,提出了一种基于粗糙集的混合特征选择算法。该算法大大提高了特征选择的效率和准确性,适用于数据挖掘的预处理过程。 相似文献
14.
模糊粗糙集由于能够处理实数值数据,甚至是混合值数据中的不确定性受到人们的广泛关注,其最重要的应用之一是特征选择,相关的特征选择方法已有不少研究,但其快速的特征选择算法研究很少。实际中的数据一般含有噪声点或信息含量低的样例,如果对数据集先筛选出代表样例,再对筛选的样例集进行数据挖掘便会降低挖掘计算量。本文基于模糊粗糙集,先根据样例的模糊下近似值对样例进行筛选,然后利用筛选样例的模糊粗糙信息熵构造特征选择的评估度量,并给出相应的特征选择算法,从而降低了算法的计算复杂度。数值试验表明该快速算法具有有效性,并且对控制筛选样例个数的参数给出了建议。 相似文献
15.
特征选择是数据预处理中一项很重要的技术,主要从原始数据集的特征中选出一些最有效的特征以降低数据集的维度,从而提高学习算法性能.目前基于邻域粗糙集模型的特征选择算法中,由于没有考虑数据分布不均的问题,对象的邻域存在一定的缺陷.为了解决这个问题,采用方差来度量数据的分布情况,重新定义二元邻域空间,基于此提出自适应二元邻域空间的粗糙集模型,并将该模型与邻域直觉模糊熵结合作为特征评估的方式,进而构造相应的特征选择算法.UCI实验结果表明:所提出的算法能够选出更小且具有更高分类精度的特征子集,同时算法拥有更少的时间消耗.因此所提的特征选择算法具有更强的优越性. 相似文献
16.
基于邻域粗糙集的特征选择算法无法评价特征与样本之间的相互关系,为此,通过融合基于大间隔获得样本对特征的评价准则,提出了基于加权正域的特征选择算法。该算法有效地实现了特征对样本的区分能力与样本对特征的贡献程度的综合利用。在UCI数据集和5个高维小样本数据集上的实验结果表明,相比传统的单准则评价的特征选择方法,该方法不仅能有效地提高特征选择的分类性能,而且更加有利于处理高维小样本数据集。 相似文献
17.
针对高维度小样本数据在特征选择时出现的维数灾难和过拟合的问题,提出一种混合Filter模式与Wrapper模式的特征选择方法(ReFS-AGA)。该方法结合ReliefF算法和归一化互信息,评估特征的相关性并快速筛选重要特征;采用改进的自适应遗传算法,引入最优策略平衡特征多样性,同时以最小化特征数和最大化分类精度为目标,选择特征数作为调节项设计新的评价函数,在迭代进化过程中高效获得最优特征子集。在基因表达数据上利用不同分类算法对简化后的特征子集分类识别,实验结果表明,该方法有效消除了不相关特征,提高了特征选择的效率,与ReliefF算法和二阶段特征选择算法mRMR-GA相比,在取得最小特征子集维度的同时平均分类准确率分别提高了11.18个百分点和4.04个百分点。 相似文献