首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Electrochemical degradation of anionic surfactants   总被引:1,自引:0,他引:1  
This study was performed to investigate the electrochemical oxidation of anionic surfactants. In particular, a synthetic solution of sodium dodecyl benzene sulfonate and a real car wash wastewater were treated by galvanostatic electrolysis using a Ti–Ru–Sn ternary oxide and a boron-doped diamond (BDD) anode. Measurements of the Chemical Oxygen Demand (COD) and the concentration of the anionic surfactants were used to follow the oxidation. Using the Ti–Ru–Sn ternary oxide anode, the complete removal of COD and sodium dodecyl benzene sulfonate was obtained only in the presence of chloride ions that act as inorganic mediators. The oxidation rate was almost independent of current density and electrolyte flow rate. In the case of BDD the mineralisation of the sodium dodecyl benzene sulfonate was achieved in all experimental conditions due to reaction with hydroxyl radicals electrogenerated on the diamond surface during electrolysis. The COD removal rate increased with increase in electrolyte flow rate, indicating that the oxidation was mass-transfer controlled. Comparison of the results of the two electrodes showed that chlorine mediated oxidation at the Ti–Ru–Sn ternary oxide anode allowed a faster COD removal of both the synthetic solution and real car wash wastewater.  相似文献   

2.
镀铬废水中铬的回收及在铬鞣中的应用   总被引:1,自引:0,他引:1  
将电镀废水中的六价铬还原成Cr(III),用化学沉淀法和絮凝法将其转化为Cr(OH)3沉淀,通过硫酸酸化,结晶为高纯硫酸铬,作为皮革工业的铬鞣剂。分析了镀铬废水的絮凝效果、Cr(III)溶液絮凝前后杂质的含量及硫酸铬的纯度,选定了最佳pH。结果表明,使用回收后的硫酸铬进行铬鞣与使用标准铬粉进行铬鞣达到了同等水平,废水中铬的回收率高达92.8%。  相似文献   

3.
Two methods were used to remove Cr(VI) from industrial wastewater. Although both are based in the same general reaction: 3Fe(II)(aq) + Cr(VI)(aq) ; 3Fe(III)(aq) + Cr(III)(aq) the way in which the required amount of Fe(II) is added to the wastewater is different for each method. In the chemical method, Fe(II)(aq) is supplied by dissolving FeSO4 · 7(H2O)(s) into the wastewater, while in the electrochemical process Fe(II)(aq) ions are formed directly in solution by anodic dissolution of an steel electrode. After this reduction process, the resulting Cr(III)(aq) and Fe(III)(aq) ions are precipitated as insoluble hydroxide species, in both cases, changing the pH (i.e., adding Ca(OH)2(s)). Based on the chemical and thermodynamic characteristics of the systems Cr(VI)–Cr(III)–H2O–e and Fe(III)–Fe(II)–H2O–e both processes were optimized. However we show that the electrochemical option, apart from providing a better form of control, generates significantly less sludge as compared with the chemical process. Furthermore, it is also shown that sludge ageing promotes the formation of soluble polynuclear species of Cr(III). Therefore, it is recommended to separate the chromium and iron-bearing phases once they are formed. We propose the optimum hydraulic conditions for the continuous reduction of Cr(VI) present in the aqueous media treated in a plug-flow reactor.  相似文献   

4.
Palladised biomass of Desulfovibrio desulfuricans ATCC 29577 (bio‐Pd(0)) effected reduction of Cr(VI) to Cr(III) under conditions where biomass alone or chemically‐prepared Pd(0) were ineffective. Reduction of 500 µmol dm?3 Cr(VI) by 0.4 mg cm?3 bio‐Pd(0) (Pd : biomass ratio of 1:1) was achieved from 1 mol dm?3 formate/acetate buffer at pH 1–7 at room temperature; the optimum pH was 3.0. The ratio of mass of Pd : dry mass of biomass, and the need for finely ground bio‐Pd(0) were important parameters for optimal Cr(VI) reduction, with a ratio of 1:1 giving 100% reduction of 500 µmol dm?3 Cr(VI) within 6 h at room temperature, decreasing to 30 min following heat treatment of the Pd(0)‐loaded biomass. The reduced Cr was recovered quantitatively as soluble Cr(III) at pH 3.0 with no poisoning of the bioinorganic catalyst with respect to continued reduction of Cr(VI). © 2002 Society of Chemical Industry  相似文献   

5.
在0.1mol/L的氨水缓冲溶液(pH=10.0)中,铬(VI)离子于-1.45V(vsS.C.E)出现一灵敏的方波伏安峰。峰电流Ip与Cr(Ⅵ)的质量浓度在0.1~2.0×103mg/L范围内呈现良好的线性关系,其相关系数为0.9886,检出限为0.05mg/LCr(Ⅵ),方法的标准偏差为2.8%。该法应用于实际样品电镀铬液及其废液中铬(Ⅵ)含量的测定,结果表明:与标准方法二苯碳酰二肼分光光度法比较,本法不需要加入特定的试剂而直接水样测定,简单快速。  相似文献   

6.
Poly(aniline-co-o-aminophenol) (PANOA)-modified glassy carbon electrode (GCE) was first used to investigate the electrocatalytic reduction of dichromate in a NaCl solution of pH 5.0. The results of cyclic voltammograms and UV–vis spectra demonstrated that the reduction of Cr(VI) occurred at PANOA-modified GCE. The FT-IR, ESR and XPS results showed that the Cr(VI) can be doped in the PANOA films and can convert to less-toxic Cr(III). The doping level Cr/N was 78.2% and trace amount of Cl (0.42%) was detected in the doped PANOA, which indicated that the doping process is effective and PANOA had rather good ion selectivity in the 0.10 M NaCl supporting electrolyte. The factors influenced the reduction were also considered. Various initial concentrations of Cr(VI) had different removal rates. The maximum removal rate of Cr(VI) at 20 mg L−1 (32.3%) was better than that of at 5 mg L−1 (22.9%). The solution pH had little effect on Cr(VI) reduction and doping process of the PANOA because PANOA had good electrochemical activity and stability in a wide range of pHs (from pH 4 to pH 8).  相似文献   

7.
Irradiation of the [Cr(C2O4)3]3− complex or the chromate(VI)–oxalate mixture, or the ternary system composed of Cr(III), Cr(VI) and oxalate, leads to chromium photoreductions in consequence of the ligand to metal charge transfer (LMCT) excitations induced by artificial solar radiation. In the case of the Cr(III) complex, the photoreduction involves the innersphere electron transfer leading to the formation of the Cr(II) species and the C2O4 radicals. On reacting with molecular oxygen, Cr(II) is oxidised to Cr(III) catalysing thereby the oxalate substitution reaction. Moreover, under specific conditions, Cr(II) can be also oxidised to Cr(VI). Chromate(VI) is not photoreducible, but in the presence of oxalate, or other sacrificial electron donor, the outersphere photoinduced electron transfer (PET) produces Cr(V) species and the C2O4 radicals. This initiates a series of thermal reactions leading to the formation of Cr(III) and oxidized oxalate (CO2). In the system composed of [Cr(C2O4)3]3− and chromate(VI), the acidic medium and anoxic conditions favour the Cr(VI) photoreduction, whereas alkaline oxygenated solutions assist the Cr(VI) photoproduction. When an approximately neutral solution equilibrated with the ambient air is irradiated intermittently, Cr(VI) is consumed and/or produced, accordingly to the time sequence of exposure and dark periods. The oscillations of Cr(VI) concentrations are accompanied by continuous oxidation of oxalate, playing the role of the sacrificial electron donor. The effects of solution pH, molecular oxygen, concentrations of reagents and cations on the reaction rates were investigated. The results of this paper revealed that the Cr(III)/Cr(VI) system under environmental conditions behaves as the photocatalytic one catalysing the oxidation of oxalate or other organic matter by molecular oxygen, contributing thereby to the abatement of pollution.  相似文献   

8.
In this work, spruce bark was used as a raw material to remove Cr(VI) ions from aqueous solutions. Three kinds of chemically modified bark adsorbents were prepared by treatment with formaldehyde (FB), dilute sulfuric acid (AB), and concentrated sulfuric acid (CB), respectively. The chemical modifications mainly changed the relative lignin content in the bark. Lower pH facilitated the adsorption of Cr(VI) ions because reduction of Cr(VI) ions to Cr(III) ions occurred during the adsorption process which consumed a large amount of H+ ions. Higher temperature accelerated the adsorption process, owing to the endothermic nature of the redox reaction. At initial solution pH around 1, the adsorption capacities of Cr(VI) ions on FB, AB, and CB were as high as 423, 503, and 759 mg/g, respectively, which were much higher than the reported adsorption capacities by other agricultural and forest biosorbents in the literatures. XPS analysis revealed the adsorption mechanism was adsorption-coupled reduction involving the electron-donor groups of lignin moieties.  相似文献   

9.
Polyethyleneimine (PEI) modified palygorskite (Pal) was used for the adsorption of Cr(VI) in aqueous solution. The absorbent was characterized by Fourier transform infrared spectroscopy (FT-IR) and thermogravimetric analysis (TGA). Characterized results confirmed that the Pal has been successfully modified by PEI. The modification of PEI increased the Cr(VI) adsorption performance of the Pal by the adsorption combined reduction mechanism, and amino groups of the adsorbent play the main role in the enhanced Cr(VI) adsorption. The maximum adsorption capacity was 51.10 mg·g−1 at pH 4.0 and 25 °C. The adsorption kinetics of Cr(VI) on the adsorbent conforms to the Langmuir isotherm model. The maximum adsorption occurs at pH 3, and then the adsorption capacity of PEI-Pal was decreased with the increase of pH values. The adsorption kinetics of Cr(VI) on PEI-Pal was modeled with pseudo-second-order model. The addition of Cl, SO42− and PO43− reduced the Cr(VI) adsorption by competition with Cr(VI) for the active sites of PEI-Pal. The Cr(VI) saturated PEI-Pal can be regenerated in alkaline solution, and the adsorption capacity can still be maintained at 30.44 mg·g−1 after 4 cycles. The results demonstrate that PEI-Pal can be used as a potential adsorbent of Cr(VI) in aqueous solutions.  相似文献   

10.
ABSTRACT

In the present study, the fate of trivalent chromium (Cr(III)) during ozonation of ultrapurified water and wastewater effluent was investigated. In experiments conducted in phosphate buffered ultrapurified water, O3 alone in excess was inefficient to oxidize Cr(III) (only about 10–15% of total Cr(III) content), while in presence of the secondary oxidant, OH radical, almost all Cr(III) was oxidized to hexavalent chromium (Cr(VI)). In a wastewater effluent, spiked with Cr(III), only about 10–20% of Cr(III) was oxidized with specific ozone doses in the range 0.15–1.5 gO3/gDOC, although O3 and OH radical were both available for reaction. Cr(VI) formation was monitored in parallel with the abatement of some common micropollutants, reacting with differing apparent second-order rate constants with ozone, decreasing in the order carbamazepine>> benzotriazole> atrazine> p-chlorobenzoic acid (pCBA). Carbamazepine and benzotriazole were abated to >80% for specific O3 doses of 0.3 gO3/gDOC and 0.8 gO3/gDOC, respectively. The more ozone-resistant compounds (atrazine and pCBA) required a specific ozone dose of about 1.25 gO3/gDOC for the same relative abatement. At this specific ozone dose (i.e., 1.25 gO3/gDOC), only about 20% of Cr(III) was oxidized to Cr(VI), whereas only 10% of Cr(III) was oxidized to Cr(VI) at a more realistic specific ozone dose for enhanced wastewater treatment for micropollutant abatement (0.5 gO3/gDOC). Therefore, for typical Cr(III) levels in municipal wastewaters, effluent ozonation only leads to toxicologically insignificant Cr(VI) concentrations.  相似文献   

11.
Adsorption of chromium by activated carbon from aqueous solution   总被引:3,自引:0,他引:3  
Adsorption isotherms of Cr(III) and Cr(VI) ions on two samples of activated carbon fibres and two samples of granulated activated carbons from aqueous solutions in the concentration range 20–1000 mg/l have been studied. The adsorption isotherms have been determined after modifying the activated carbon surfaces by oxidation with nitric acid, ammonium persulphate, hydrogen peroxide and oxygen gas at 350°C and after degassing at different temperatures. The adsorption of Cr(III) ions increases on oxidation and decreases on degassing. On the other hand, the adsorption of Cr(VI) ions decreases on oxidation and increases on degassing. The increase of Cr(III) and the decrease of Cr(VI) on oxidation and the decrease of Cr(III) and the increase of Cr(VI) on degassing have been attributed to the fact that the oxidation of the carbon surface enhances the amount of acidic carbon–oxygen surface groups while degassing eliminates these surface groups. Thus while the presence of acidic surface groups enhances the adsorption of Cr(III) cations, it suppresses the adsorption of Cr(VI) anions.  相似文献   

12.
朱绒霞  刘欣  张波 《广东化工》2011,38(10):139-140
在硫酸介质中,Cr(Ⅵ)能使铬蓝黑-R褪色,据此,建立了测定Cr(Ⅵ)的新方法。在500 nm波长下,用分光光度计进行实验研究,结果表明:反应温度为70℃,反应时间8 min,铬蓝黑-R褪色程度(△A)与Cr(Ⅵ)的质量浓度在一定范围内呈线性关系,线性范围为0~50μg/mL。适用于各种含铬溶液中Cr(Ⅵ)的测定。  相似文献   

13.
The elimination of Cr(VI) from aqueous solutions at neutral and low alkaline pH by photocatalytic reduction to Cr(III), using ZnO powder as catalyst, is investigated. The study has been performed by determination of the percentage of Cr(VI) eliminated in the presence of some species (i.e. Zn(II), Cd(II), Ni(II), Ca(II), CH3COO?, PO3-4, CO2-3, S2- and NH3) which usually are found in wastes together with Cr(VI). The results obtained show that the presence of some species prevents the alkalinization of the solution during irradiation, which increases the yield of Cr(VI) photoreduction. Other species, such as S2- and NH 3 , are oxidized during illumination: thus they prevent electron–hole recombination and, consequently, increase the yield of the Cr(VI) elimination.  相似文献   

14.
In the present study, a low-cost adsorbent is developed from the naturally and abundantly available sawdust which is biodegradable. The removal capacity of Cr(VI) from aqueous solutions and from the synthetically prepared industrial effluent of electroplating and tannery industries is obtained. The batch experiments are carried out to investigate the effect of the significant process parameters such as initial pH, change in pH during adsorption, contact time, adsorbent amount, and the initial Cr(VI) concentration. The maximum adsorption of Cr(VI) on sawdust is obtained at an initial pH value of 1. The value of pH increases with increase in contact time and initial Cr(VI) concentration. The equilibrium data for the adsorption of Cr(VI) on sawdust is tested with various adsorption isotherm models such as Langmuir, Freundlich, Redlich–Peterson, Koble–Corrigan, Tempkin, Dubinin–Radushkevich and Generalized equation. The Langmuir isotherm model is found to be the most suitable one for the Cr(VI) adsorption using sawdust and the maximum adsorption capacity obtained is 41.5 mg g−1 at a pH value of 1. The adsorption process follows the second-order kinetics and the corresponding rate constants are obtained. Desorption of Cr(VI) from sawdust using acid and base treatment exhibited a higher desorption efficiency by more than 95%. A feasible solution is proposed, for the disposal of the contaminant (acid and base solutions) containing high concentration of Cr(VI) obtained during the desorption process. The interference of other ions which are generally present in the electroplating and tannery industrial effluent streams on the Cr(VI) removal is investigated.  相似文献   

15.
《分离科学与技术》2012,47(13):3563-3581
Abstract

The adsorption of Cr(VI) from aqueous solution by Turkish vermiculite were investigated in terms of equilibrium, kinetics, and thermodynamics. Experimental parameters affecting the removal process such as pH of solution, adsorbent dosage, contact time, and temperature were studied. Equilibrium adsorption data were evaluated by Langmuir, Freundlich and Dubinin–Radushkevich (D–R) isotherm models. Langmuir model fitted the equilibrium data better than the Freundlich model. The monolayer adsorption capacity of Turkish vermiculite for Cr(VI) was found to be 87.7 mg/g at pH 1.5, 10 g/L adsorbent dosage and 20°C. The mean free energy of adsorption (5.9 kJ/mol) obtained from the D–R isotherm indicated that the type of sorption was essentially physical. The calculated thermodynamic parameters (ΔG o , ΔH o and ΔS o ) showed that the removal of Cr(VI) ions from aqueous solution by the vermiculite was feasible, spontaneous and exothermic at 20–50°C. Equilibrium data were also tested using the adsorption kinetic models and the results showed that the adsorption processes of Cr(VI) onto Turkish vermiculite followed well pseudo-second order kinetics.  相似文献   

16.
《Ceramics International》2021,47(18):25951-25958
Herein, 3D flower-like δ-MnO2, MXene and δ-MnO2/MXene in-situ hybrid (IH) composites were prepared (via hydrothermal and solution treatment methods) for the effective removal of Cr (VI) from the contaminated water. The effect of various experimental parameters including contact time, pH levels and initial Cr (VI) ions concentration was determined and compared under static conditions. The kinetics of Cr (VI) adsorption onto δ-MnO2, MXene, and IH confirmed the existence of a pseudo-second-order model. The obtained results reveal that the removal of Cr (VI) largely depends on the pH of the solution. The adsorption isotherm data fits best for Freundlich model, illustrating a multi-site adsorption mechanism of Cr (VI) ion on these adsorbents. The maximum Cr (VI) adsorption capacities onto δ-MnO2, MXene and IH are 235.65 mg g−1, 273.1 mg g−1 and 353.87 mg g−1, respectively. The study reveals that hetero-engineered approach of synthesizing transition metal oxides with MXenes provides abundant opportunities to remove contaminants from water with better efficiency due to reduction and electrostatic interaction.  相似文献   

17.
The electrochemical oxidation of aqueous Cr(III) was examined using cyclic voltammetry with a polycrystalline Au electrode in KOH solutions of varying pH and Cr(III) concentration. The mechanism and kinetics for the oxidation of Cr(III) is a quasi-reversible diffusion-controlled reaction and is largely dependent on the solution pH. The reaction mechanism is initiated by an irreversible electrochemical electron transfer to form Cr(IV) which is the rate-determining step (RDS). Following the RDS, subsequent oxidation of Cr to its hexavalent state occurs by the disproportionation of Cr(IV) at low KOH concentrations and electron transfer at high KOH concentrations due to the involvement of OH in the disproportionation reaction. As the solution pH increases, the Cr(III) oxidation peak potential shifts negatively owing to the involvement of OH in the RDS. The competitive adsorption of OH and CrO2 on the electrode surface also plays an important role in the oxidation behavior.  相似文献   

18.
《分离科学与技术》2012,47(6):868-876
A green chemical method was explored and described for separation and extraction of the toxic hexavalent chromium from aqueous solutions and real water samples. A green reduction reaction for the transformation of toxic hexavalent chromium into the nontoxic trivalent chromium ion was performed by using hydrogen peroxide. The produced Cr(III) was then extracted by biosorption on the surface of a novel and eco-friendly gelatin-grafted-baker’s yeast (Gelatin-Yeast) biosorbent. The investigated biosorbent was characterized by high capacity value of the reduced trivalent chromium species in pH 6.0 as 1.120 mmol g?1. The biosorption processes were examined, monitored, and optimized in different experimental and controlling parameters. The potential applications of Gelatin-Yeast for separation and removal of Cr(VI) from real industrial and sea water samples were also studied.  相似文献   

19.
A hollow fiber supported liquid membrane (HFSLM) system for the removal and preconcentration of Cr(VI) has been developed and characterized using Aliquat 336 as carrier. The influence of the chemical composition on the efficiency of the membrane system has been investigated, such as the organic solvent and the stripping composition. Among the stripping reagents tested, a solution of 0.5 M HNO3 was found to be the most effective to strip Cr(VI) from the loaded organic phase. Moreover, physical parameters such as the stability of the membrane and the operation mode of the module were also evaluated. The results demonstrated the effectiveness of the HFSLM system during 8 non-stop days’ operation. This membrane-based separation system has effectively been used to remove Cr(VI) from different aqueous samples, such as industrial waters and spiked natural waters at μg L−1 levels. Moreover, the system has allowed both the separation and enrichment of the metal and, thus, facilitating the detection of chromate contained in aqueous samples and reducing the volume of polluted water to be treated.  相似文献   

20.
Good sorption properties and simple synthesis route make schwertmannite an increasingly popular adsorbent. In this work, the adsorption properties of synthetic schwertmannite towards Cr(VI) were investigated. This study aimed to compare the properties and sorption performance of adsorbents obtained by two methods: Fe3+ hydrolysis (SCHA) and Fe2+ oxidation (SCHB). To characterise the sorbents before and after Cr(VI) adsorption, specific surface area, particle size distribution, density, and zeta potential were determined. Additionally, optical micrographs, SEM, and FTIR analyses were performed. Adsorption experiments were performed in varying process conditions: pH, adsorbent dosage, contact time, and initial concentration. Adsorption isotherms were fitted by Freundlich, Langmuir, and Temkin models. Pseudo-first-order, pseudo-second-order, intraparticle diffusion, and liquid film diffusion models were used to fit the kinetics data. Linear regression was used to estimate the parameters of isotherm and kinetic models. The maximum adsorption capacity resulting from the fitted Langmuir isotherm is 42.97 and 17.54 mg·g−1 for SCHA and SCHB. Results show that the adsorption kinetics follows the pseudo-second-order kinetic model. Both iron-based adsorbents are suitable for removing Cr(VI) ions from aqueous solutions. Characterisation of the adsorbents after adsorption suggests that Cr(VI) adsorption can be mainly attributed to ion exchange with SO42 groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号