首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper aims to investigate the exponential leader‐following consensus for nonlinear multi‐agent systems with time‐varying communication and input delays by using hybrid control. Based on the Lyapunov functional method, impulsive differential equation theory and matrix analysis, we show that all the followers can achieve leader‐following consensus with the virtual leader exponentially even if only a fraction of followers can obtain the leader's information. Two classes of exponential consensus criteria as well as the convergence rates for the controlled multi‐agent systems are presented under very relaxed interaction topology conditions, i.e., the directed interaction topology among the followers is only required to have p(p>1) disjoint strong components. Finally, two numerical examples are given to validate the proposed theoretical results.  相似文献   

2.
This paper studies the leader‐following consensus problem for Lipschitz nonlinear multi‐agent systems using novel event‐triggered controllers. A distributed adaptive law is introduced for the event‐based control strategy design such that the proposed controllers are independent of system parameters and only use the relative states of neighboring agents, and hence are fully distributed. Due to the introduction of an event‐triggered control scheme, the controller of the agent is only triggered at it's own event times, and thus reduces the amount of communication between controller and actuator and lowers the frequency of controller updates in practice. Based on a quadratic Lyapunov function, the event condition which uses only neighbor information and local computation at trigger instants is established. Infinite triggers within a finite time are also verified to be impossible. The effectiveness of the theoretical results are illustrated through simulation examples.  相似文献   

3.
The current paper investigates guaranteed‐cost output consensus analysis and design problems for high‐order linear time‐invariant singular multi‐agent systems with constant time delays, which can realize suboptimal output consensus control. Firstly, a new output consensus protocol with a suboptimal index and a single delay is proposed to realize the tradeoff design between output consensus regulation performances and control energy consumptions. Then, sufficient conditions for guaranteed‐cost output consensus and consensualization are derived in terms of linear matrix inequalities by a combined tool from the Lyapunov‐Krasovskii approach and the free‐weighting matrix technique, respectively, and the output consensus function is determined on the basis of the First Equivalent Form. Finally, a numerical example is performed to demonstrate the effectiveness and conservativeness of theoretical results.  相似文献   

4.
This paper is concerned with the adaptive leader‐following consensus for first‐ and second‐order uncertain nonlinear multi‐agent systems (NMASs) with single‐ and double‐integrator leader, respectively. Remarkably, the control coefficients of the followers need not belong to any known finite interval, which makes the systems in question essentially different from those in the related works. Moreover, parameterized unknowns exist in the nonlinearities of the followers, and unknown control input is imposed on the leader, which make the problems difficult to solve. To compensate for these uncertainties/unknowns, the leader‐following consensus protocols are constructed by employing adaptive technique for the first‐order and the second‐order NMASs. Under the designed adaptive consensus protocols and the connected graph, the leader‐following consensus is achieved. Finally, two examples are given to show the effectiveness of the proposed leader‐following consensus protocols.  相似文献   

5.
This paper is concerned with the fixed‐time coordinated tracking problem for a class of nonlinear multi‐agent systems under detail‐balanced directed communication graphs. Different from conventional finite‐time coordinated tracking strategies, the fixed‐time approach developed in this paper guarantees that a settling time bound is prescribed without dependence on initial states of agents. First, for the case of a single leader, a distributed protocol based on fixed‐time stability techniques is proposed for each follower to accomplish the consensus tracking in a fixed time. Second, in the presence of multiple leaders, a new distributed protocol is proposed such that states of followers converge to the dynamic convex hull spanned by those of leaders in a fixed time. In addition, for a class of linear multi‐agent systems, sufficient conditions that guarantee the fixed‐time coordinated tracking are provided. Finally, numerical simulations are given to demonstrate the effectiveness of the theoretical results.  相似文献   

6.
In this paper, the distributed observer‐based stabilization problem of multi‐agent systems under a directed graph is investigated. Distributed observer‐based control protocol with sampled‐data information is proposed. The dynamics of each agent contain a nonlinear part, which is supposed to be general Lipschitz. In order to stabilize the states of the whole network, all the nodes utilize the relative output estimation error at sampling instants and only a small fraction of nodes use the absolute output estimation error additionally. By virtue of the input‐to‐state stability (ISS) property and the Lyapunov stability theory, an algorithm to design the control gain matrix, observer gain matrix, coupling strength as well as the allowable sampling period are derived. The conditions are in the form of LMIs and algebraic inequality, which are simple in form and easy to verify. Some further discussions about the solvability of obtained linear matrix inequalities (LMIs) are also given. Lastly, an example is simulated to further validate the obtained results.  相似文献   

7.
A novel intermittent impulsive scheme is presented to realize consensus of multi‐agent systems with time‐varying delay in this paper because intermittent impulsive control may break through the limitation of upper bound of impulsive intervals in general impulsive control in our consensus scheme. Instead of activating all the time, we introduce the intermittent impulsive control approach into the delayed multi‐agent systems where the impulsive controller is only functioned in the control windows. Based on the algebraic graph theory, the Lyapunov stability theory, and Halanay inequality matrix theory, some adequate conditions are proposed to guarantee the consensus of delayed multi‐agent systems via pinning intermittent impulsive control. Simulation results are provided ultimately to verify the validity of the proposed control mechanism.  相似文献   

8.
The fixed‐time synchronization problem for a class of second‐order nonlinear multi‐agent systems with a leader‐follower architecture is investigated in this paper. To achieve the fixed‐time tracking task, the design procedure is divided into two steps. At the first step, a distributed fixed‐time observer is designed for each agent to estimate the leader's state in a fixed time. Then, at the second step, based on the technique of adding a power integrator, a fixed‐time tracking controller for each agent is proposed such that the estimate leader's state can be tracked in a fixed time. Finally, an observer‐based fixed‐time controller is developed such that the leader can be tracked by all the followers in a fixed time, which can be predetermined. Simulations are presented to verify the effectiveness of the proposed approach.  相似文献   

9.
This paper is concerned with the adaptive consensus problem of fractional multi‐agent systems for both the linear and nonlinear cases. Distributed adaptive protocols are designed, respectively, for linear and nonlinear fractional multi‐agent systems, under which consensus is achieved for any undirected connected communication graph without using any global information. Furthermore, the leader‐following problem is studied as an extension. Finally, two numerical examples are given to demonstrate the effectiveness of the obtained results.  相似文献   

10.
The emergence of networked control systems urges the digital control design to integrate communication constraints efficiently. In order to accommodate this requirement, this paper investigates the joint design of tracking problem for multi‐agent system (MAS) in the presence of resource‐limited communication channel and quantization. An event‐triggered robust learning control with quantization is firstly proposed and employed for MAS in this paper. The new event‐triggered distributed robust learning control system with the introduction of logarithmic quantization guarantees the asymptotic tracking property on the finite interval. Convergence analysis is given based on the Lyapunov direct method. Finally, numerical simulations are given to illustrate the efficacy of the event‐triggered approach compared with time‐triggered controllers.  相似文献   

11.
This paper mainly investigates the event‐triggered control for couple‐group multi‐agent systems with communication delay. Logarithmic quantization is considered in the communication channels. Event‐triggered control laws are adopted to reduce the frequency of individual actuation updating for discrete‐time agent dynamics. The proposed protocol is efficient as long as the quantization levels are dense enough, i.e. the density of quantization levels goes to infinity is a sufficient condition for the asymptotic consensus of the multi‐agent systems. It turns out that the bounded consensus depends on not only the density of quantization levels, but also the updating strategy of events. Finally, a simulation example is given to demonstrate the effectiveness of the proposed methods.  相似文献   

12.
A multi‐tracking problem of multi‐agent networks is investigated in this paper where multi‐tracking refers to that the states of multiple agents in each subnetwork asymptotically converge to the same desired trajectory in the presence of information exchanges among subnetworks. The multi‐tracking of first order multi‐agent networks with directed topologies was studied. Self‐triggered protocols were proposed along with triggering functions to solve the stationary multi‐tracking and bounded dynamic multi‐tracking. The self‐triggered scheduling is obtained, and the system does not exhibit Zeno behavior. Numerical examples are provided to illustrate the effectiveness of the obtained criteria.  相似文献   

13.
In this paper, we consider the semiglobal leader‐following consensus of general linear multi‐agent systems subject to input saturation. First, an event‐triggered control protocol is provided to ensure semiglobal consensus of the multi‐agent systems, in which the agents should continuously monitor the information of their neighbors. Second, a self‐triggered control protocol is proposed to guarantee the semiglobal consensus of the multi‐agent systems, in which the agents only have access to the information of their neighbors in discrete time instants. Moreover, both event‐triggered control protocol and self‐triggered control protocol are proved to be Zeno‐free, that is, the inter‐event times for such two protocols have positive lower bounds. Finally, two numerical examples are provided to illustrate the effectiveness of the proposed event‐based semiglobal consensus protocols.  相似文献   

14.
This paper is concerned with the controllability of a multi‐agent dynamical system in which all identical first‐order dynamical agents receive a common exogenous control signal in addition to their inter‐agent communications. Existing graph theoretic results are used to determine conditions for controllability, and to study the dependency of controllability on the size of network and the number of connections. The fragility of controllability in the presence of hidden or broken connections is also investigated.  相似文献   

15.
This paper proposes a new class of nonlinear protocols for fixed‐time consensus in networked agents with directed and intermittent communications. First of all, based on the assumption of a common positive dwell time for all successful links, it is theoretically shown that the asymptotical consensus can be achieved if the interaction topology with some fixed length of time has a spanning tree. Then, if the length sum of time intervals, over which the directed interaction topology contains a spanning tree, is larger that a threshold value, which is independent of initial conditions, the system will solve a fixed‐time consensus problem. Furthermore, in light of the mirror operation principle of graph theory, the proposed protocol is extended to solve the fixed‐time consensus problem if a common positive dwell time for all active links is strongly connected without the detailed balanced condition. Finally, the effectiveness of the theoretical results is illustrated by simulation results.  相似文献   

16.
This paper addresses the observer‐based consensus tracking problem of multi‐agent systems with intermittent communications. The agent dynamics are modeled as general linear systems with Lipschitz nonlinearity. Under the assumption that each agent can intermittently share its relative output with neighbors, a class of an observer‐type protocol is proposed, and the consensus tracking problem can be converted further into the stability problem of the nonlinear switching systems. Using a combined tool from M matrix theory, switching theory and the averaging approach, a multi‐step algorithm is presented to construct the observer gains and protocol parameters, and the sufficient criteria established not only can ensure the state estimates convergence to the real values but also can guarantee the follower states synchronize to those of the leader. The obtained results reveal the relationships among the communication rate, the convergence rate, and the dwell time of switching topologies. Finally, the theoretical findings are validated by a numerical example.  相似文献   

17.
The distributed model predictive control (MPC) is studied for the tracking and formation problem of multi‐agent system with time‐varying communication topology. At each sampling instant, each agent solves an optimization problem respecting input and state constraints, to obtain its optimal control input. In the cost function for the optimization problem of each agent, the formation weighting coefficient is properly updated so that the adverse effect of the time‐varying communication topology on the closed‐loop stability can be counteracted. It is shown that the overall multi‐agent system can achieve the desired tracking and formation objectives. The effectiveness of the results is demonstrated through two examples.  相似文献   

18.
This paper deals with the leader‐following consensus for nonlinear stochastic multi‐agent systems. To save communication resources, a new centralized/distributed hybrid event‐triggered mechanism (HETM) is proposed for nonlinear multi‐agent systems. HETMs can be regarded as a synthesis of continuous event‐triggered mechanism and time‐driven mechanism, which can effectively avoid Zeno behavior. To model the multi‐agent systems under centralized HETM, the switched system method is applied. By utilizing the property of communication topology, low‐dimensional consensus conditions are obtained. For the distributed hybrid event‐triggered mechanism, due to the asynchronous event‐triggered instants, the time‐varying system method is applied. Meanwhile, the effect of network‐induced time‐delay on the consensus is also considered. To further reduce the computational resources by constantly testing whether the broadcast condition has been violated, self‐triggered implementations of the proposed event‐triggered communication protocols are also derived. A numerical example is given to show the effectiveness of the proposed method.  相似文献   

19.
We are concerned with the consensus problem for a class of uncertain nonlinear multi‐agent systems (MASs) connected through an undirected communication topology via event‐triggered approaches in this paper. Two distributed control strategies, the adaptive centralized event‐triggered control one and adaptive distributed event‐triggered control one, are presented utilizing neural networks (NNs) and event‐driven mechanisms, where the advantages of the proposed control laws lie that they remove the requirement for exact priori knowledge about parameters of individual agents by taking advantage of NNs approximators and they save computing and communication resources since control tasks only execute at certain instants with respect to predefined threshold functions. Also, the trigger coefficient can be regulated adaptively with dependence on state errors to ensure not only the control performance but also the efficiency of the network interactions. It is proven that all signals in the closed‐loop system are bounded and the Zeno behavior is excluded. Finally, simulation examples are presented for illustration of the theoretical claims.  相似文献   

20.
Recent years have witnessed a growing interest in event‐triggered strategies for coordination and cooperative control of multi‐agent systems. However, the most previous works and developments focus on the interactive network that has no communication delays. This paper deals with the consensus problem of an agent system with event‐triggered control strategy under communication time delays. We first propose a time delays system model, then present a novel event triggering function that not only avoids continuous communication but also excludes the Zeno behavior. Furthermore, we provide the consensus analysis using an inequality technique instead of the traditional linear matrix inequality method, and we demonstrate that the inter‐event times for each agent are strictly positive, which implies that the Zeno behavior can be excluded. Finally, simulation results show the effectiveness of the proposed approach and illustrate the correctness of the theoretical results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号