首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper considers the leader-following synchronisation problem of nonlinear multi-agent systems with unmeasurable states and a dynamic leader whose input is not available to any follower. Each follower is governed by a nonlinear system with unknown dynamics. Two distributed fuzzy adaptive protocols, based on local and neighbourhood observers, respectively, are proposed to guarantee that the states of all followers synchronise to that of the leader, under the condition that the communication graph among the followers contains a directed spanning tree. Based on Lyapunov stability theory, the synchronisation errors are guaranteed to be cooperatively uniformly ultimately bounded. Two examples are provided to show the effectiveness of the proposed controllers.  相似文献   

2.
This paper investigates the leader-following fixed-time output feedback consensus problem for second-order multi-agent systems with input saturation. By combing fixed-time control technique and bi-limit homogeneous systems theory, a class of bounded fixed-time consensus protocols are developed for leader-following multi-agent systems. The protocol design is divided into two parts. First, when all the state information of the followers are measurable, a state feedback consensus protocol is designed to achieve fixed-time consensus. Then, when the velocity information is unmeasurable, an observer-based fixed-time consensus protocol is proposed. With the help of Lyapunov stability theorem and the property of a homogeneous function, it is theoretically shown that the states of all followers can track that of the leader in fixed-time in the presence of input saturation. Finally, numerical simulation is carried out to illustrate the effectiveness of theoretical results.  相似文献   

3.
彭周华  王丹  王昊  王巍 《自动化学报》2014,40(11):2595-2601
研究单向通信拓扑领航者动态未知线性多智能体系统的协同跟踪问题.基于邻居的相对状态信息,设计了分布式迭代学习控制律实现对领航者的协同跟踪控制,采用Lyapunov-Krasovskii函数分析闭环系统的稳定性与收敛性.进而,将状态反馈结论拓展到输出反馈,通过构造局部观测器估计不可量测的状态信息,采用估计的相对状态信息设计了分布式迭代学习控制器.对于以上两种情形,多智能体系统在通讯拓扑含有生成树的条件下能够实现与领航者的状态同步,同时,所设计的分布式迭代学习律能够对领航者未知输入进行精确估计.仿真实例验证了所提方法的有效性.  相似文献   

4.
This paper considers the cooperative tracking of linear multi-agent systems with a dynamic leader whose input information is unavailable to any followers. Cooperative iterative learning controllers, based on the relative state information of neighboring agents, are proposed for tracking the dynamic leader over directed communication topologies. Stability and convergence of the proposed controllers are established using Lyapunov-Krasovskii functionals. Furthermore, this result is extended to the output feedback case where only the output information of each agent can be obtained. A local observer is constructed to estimate the unmeasurable states. Then, cooperative iterative learning controllers, based on the relative observed states of neighboring agents,are devised. For both cases, it is shown that the multi-agent systems whose communication topologies contain a spanning tree can reach synchronization with the dynamic leader, and meanwhile identify the unknown input of the dynamic leader using distributed iterative learning laws. An illustrative example is provided to verify the proposed control schemes.  相似文献   

5.
In this paper, a robust adaptive fuzzy control approach is proposed for a class of nonlinear systems in strict‐feedback form with the unknown time‐varying saturation input. To deal with the time‐varying saturation problem, a novel controller separation approach is proposed in the literature to separate the desired control signal from the practical constrained control input. Furthermore, an optimized adaptation method is applied to the dynamic surface control design to reduce the number of adaptive parameters. By utilizing the Lyapunov synthesis, the fuzzy logic system technique and the Nussbaum function technique, an adaptive fuzzy control algorithm is constructed to guarantee that all the signals in the closed‐loop control system remain semiglobally uniformly ultimately bounded, and the tracking error is driven to an adjustable neighborhood of the origin. Finally, some numerical examples are provided to validate the effectiveness of the proposed control scheme in the literature.  相似文献   

6.
This paper is concerned with the adaptive leader‐following consensus for first‐ and second‐order uncertain nonlinear multi‐agent systems (NMASs) with single‐ and double‐integrator leader, respectively. Remarkably, the control coefficients of the followers need not belong to any known finite interval, which makes the systems in question essentially different from those in the related works. Moreover, parameterized unknowns exist in the nonlinearities of the followers, and unknown control input is imposed on the leader, which make the problems difficult to solve. To compensate for these uncertainties/unknowns, the leader‐following consensus protocols are constructed by employing adaptive technique for the first‐order and the second‐order NMASs. Under the designed adaptive consensus protocols and the connected graph, the leader‐following consensus is achieved. Finally, two examples are given to show the effectiveness of the proposed leader‐following consensus protocols.  相似文献   

7.
不确定非线性多智能体系统的分布式容错协同控制   总被引:1,自引:0,他引:1  
针对一类存在未知非线性的多智能体系统,研究具有执行器故障的“领导-跟随”协同控制问题。利用模糊逻辑系统逼近系统的未知非线性,通过设计故障估计器辨识系统的故障。在“跟随者”之间的通信网络为单向连通的情况下,提出分布式模糊容错协同控制器的设计方案,实现“跟随者”的状态跟踪“领导者”的状态。基于Lyapunov稳定性理论,证明系统的跟踪误差一致最终有界。仿真结果验证了所提出设计方法的有效性。  相似文献   

8.
This article investigates the leader‐follower consensus problem of a class of non‐strict‐feedback nonlinear multiagent systems with asymmetric time‐varying state constraints (ATVSC) and input saturation, and an adaptive neural control scheme is developed. By introducing the distributed sliding‐mode estimator, each follower can obtain the estimation of leader's trajectory and track it directly. Then, with the help of time‐varying asymmetric barrier Lyapunov function and radial basis function neural networks, the controller is designed based on backstepping technique. Furthermore, the mean‐value theorem and Nussbaum function are utilized to address the problems of input saturation and unknown control direction. Moreover, the number of adaptive laws is equal to that of the followers, which reduces the computational complexity. It is proved that the leader‐follower consensus tracking control is achieved without violating the ATVSC, and all closed‐loop signals are semiglobally uniformly ultimately bounded. Finally, the simulation results are provided to verify the effectiveness of the control scheme.  相似文献   

9.
This paper is concerned with the global output feedback stabilization for a class of nonholonomic systems with unknown parameter, polynomial‐of‐output, and unmeasurable states dependent growth. A dynamic high‐gain observer is first designed to reconstruct the unmeasurable system states and, in addition, to compensate the serious parameter unknowns in nonlinear drifts. Then, we design a compact adaptive controller without invoking the backstepping technique, which reduces the complexity of controller. Additionally, a switching control strategy is employed to overcome the smooth feedback obstacle associated with nonholonomic systems. It is shown that the proposed control laws guarantee that all closed‐loop system states are globally bounded and ultimately converge to zero. The simulation results demonstrate the effectiveness of the proposed control strategy.  相似文献   

10.
This paper addresses the problem of semi‐global stabilization by output feedback for a class of nonlinear systems whose output gains are unknown. For each subsystem, we first design a state compensator and use the compensator states to construct a control law to stabilize the nominal linear system without the perturbing nonlinearities. Then, combining the output feedback domination approach with block‐backstepping scheme, a series of homogeneous output feedback controllers are constructed recursively for each subsystem and the closed‐loop system is rendered semi‐globally asymptotically stable.  相似文献   

11.
This article studies the adaptive output feedback control problem of a class of uncertain nonlinear systems with unknown time delays. The systems considered are dominated by a triangular system without zero dynamics satisfying linear growth in the unmeasurable states. The novelty of this article is that a universal-type adaptive output feedback controller is presented to time-delay systems, which can globally regulate all the states of the uncertain systems without knowing the growth rate. An illustrative example is provided to show the applicability of the developed control strategy.  相似文献   

12.

针对一类具有未知非线性和未知参数摄动的非线性多智能体系统, 提出一种分布式模糊自适应镇定控制方法. 基于邻接智能体信息和部分智能体的自身信息, 分别设计静态耦合和动态耦合的分布式模糊自适应控制律. 基于Lyapunov 稳定性理论, 证明了所提出的控制器能使得系统状态最终稳定于原点的邻域内. 仿真实例验证了所提出方法的有效性.

  相似文献   

13.
In this paper, the problem of distributed containment control for pure‐feedback nonlinear multiagent systems under a directed graph topology is investigated. The dynamics of each agent are molded by high‐order nonaffine pure‐feedback form. Neural networks are employed to identify unknown nonlinear functions, and dynamic surface control technique is used to avoid the problem of explosion of complexity inherent in backstepping design procedure. The Frobenius norm of the ideal neural network weighting matrices is estimated, which is helpful to reduce the number of the adaptive tuning law and alleviate the networked communication burden. The proposed distributed containment controllers guarantee that all signals in the closed‐loop systems are cooperatively semiglobally uniformly ultimately bounded, and the outputs of followers are driven into a convex hull spanned by the multiple dynamic leaders. Finally, the effectiveness of the developed method is demonstrated by simulation examples.  相似文献   

14.
This paper presents an approximation design for a decentralized adaptive output‐feedback control of large‐scale pure‐feedback nonlinear systems with unknown time‐varying delayed interconnections. The interaction terms are bounded by unknown nonlinear bounding functions including unmeasurable state variables of subsystems. These bounding functions together with the algebraic loop problem of virtual and actual control inputs in the pure‐feedback form make the output‐feedback controller design difficult and challenging. To overcome the design difficulties, the observer‐based dynamic surface memoryless local controller for each subsystem is designed using appropriate Lyapunov‐Krasovskii functionals, the function approximation technique based on neural networks, and the additional first‐order low‐pass filter for the actual control input. It is shown that all signals in the total controlled closed‐loop system are semiglobally uniformly bounded and control errors converge to an adjustable neighborhood of the origin. Finally, simulation examples are provided to illustrate the effectiveness of the proposed decentralized control scheme. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
This paper considers the leader-following consensus for a class of nonlinear switched multi-agent systems (MASs) with non-strict feedback forms and input saturations under unknown switching mechanisms. First, in virtue of Gaussian error functions, the saturation nonlinearities are represented by asymmetric saturation models. Second, neural networks are utilized to approximate some unknown packaged functions, and the structural property of Gaussian basis functions is introduced to handle the non-strict feedback terms. Third, by using the backstepping process, a common Lyapunov function is constructed for all the subsystems of the followers. At last, we propose an adaptive consensus protocol, under which the tracking error under arbitrary switching converges to a small neighborhood of the origin. The effectiveness of the proposed protocol is illustrated by a simulation example.   相似文献   

16.
This paper investigates the global practical tracking via adaptive output‐feedback for a class of uncertain nonlinear systems. Essentially different from the closely related literature, the system under investigation possesses unknown time‐varying control coefficients and a polynomial‐of‐output growth rate, and meanwhile, the system nonlinearities and the reference signal allow serious unknowns. For this, an adaptive observer is designed to reconstruct the system unmeasured states, where a new dynamic gain is introduced to compensate the serious unknowns in the system nonlinearities and the reference signal. Based on this and by backstepping technique, an adaptive output‐feedback controller is successfully designed, such that all the states of the closed‐loop system are bounded, and the tracking error will be prescribed sufficiently small after a finite time. A numerical simulation is provided to demonstrate the effectiveness of the proposed method.  相似文献   

17.
This paper discusses the input‐to‐state practical stability (ISpS) problem for a class of stochastic strict‐feedback systems which possess dynamic disturbances, unstructured uncertainties and unmodeled dynamics. The uncertain terms not only depend on the measurable output, but also are related with other unmeasurable states of the system. In the backstepping design, we use fuzzy logic systems directly to approach unknown control signals rather than unknown functions. A main advantage of the direct control method is that for an nth order strict‐feedback stochastic system, only four online parameters are needed. Moreover, it is proved that the closed‐loop system is ISpS in probability by using a stochastic small‐gain approach. Two simulation examples illustrate the effectiveness of the proposed scheme.  相似文献   

18.
This paper considers the global finite‐time output‐feedback stabilization for a class of uncertain nonlinear systems. Comparing with the existing related literature, two essential obstacles exist: On the one hand, the systems in question allow serious parametric unknowns and serious time variations coupling to the unmeasurable states, which is reflected in that the systems have the unmeasurable states dependent growth with the rate being an unknown constant multiplying a known continuous function of time. On the other hand, the systems possess remarkably inherent nonlinearities, whose growth allows to be not only low‐order but especially high‐order with respect to the unmeasurable states. To effectively cope with these obstacles, we established a time‐varying output‐feedback strategy to achieve the finite‐time stabilization for the systems under investigation. First, a time‐varying state‐feedback controller is constructed by adding an integrator method, and by homogeneous domination approach, a time‐varying reduced‐order observer is designed to precisely rebuild the unmeasurable states. Then, by certainty equivalence principle, a desired time‐varying output‐feedback controller is constructed for the systems. It is shown that, as long as the involved time‐varying gain is chosen fast enough to overtake the serious parametric unknowns and the serious time variations, the output‐feedback controller renders that the closed‐loop system states converge to zero in finite time. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

19.
This paper addresses a low‐complexity distributed containment control problem and its extension to fault‐tolerant control for networked nonlinear pure‐feedback systems under a directed graph. The multiple dynamic leaders are neighbors of only a subset of the followers described by completely non‐affine multi‐input multi‐output pure‐feedback dynamics. It is assumed that all followers' nonlinearities are heterogeneous and unknown. The proposed containment controller is implemented by using only error surfaces integrated by performance bounding functions and does not require any differential equations for compensating uncertainties and faults. Thus, compared with the previous containment control approaches for multi‐agent systems with unknown non‐affine nonlinearities, the distributed containment control structure is simplified. In addition, it is shown that the proposed control scheme can be applied to the fault‐tolerant containment control problem in the presence of unexpected system and actuator faults, without reconstructing any control structure. It is shown from Lyapunov stability theorem that all followers nearly converge to the dynamic convex hull spanned by the dynamic leaders and the containment control errors are preserved within certain given predefined bounds. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
In this research, a novel extension of the passivity‐based output feedback trajectory tracking controller is developed for internally damped Euler‐Lagrange systems with input saturation. Compared with the previous output feedback controllers, this new design of a combined adaptive controller‐observer system will reduce the risk of actuator saturation effectively via generalized saturation functions. Semi‐global uniform ultimate boundedness stability of the tracking errors and state estimation errors is guaranteed by Lyapunov stability analysis. An application of the proposed saturated output feedback controller is the stabilization of a nonholonomic wheeled mobile robot with saturated actuators towards desired trajectories. Simulation results are provided to illustrate the efficiency of the proposed controller in dealing with the actuator saturation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号