首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 0 毫秒
1.
To obtain information on the tribological behaviour of silicon carbide at elevated temperatures, unlubricated ball-on-flat wear tests were conducted on sintered silicon carbide in self-mated sliding in air. The contact load was varied from 3.2 to 98.0 N, and a temperature range of 23°C to 1000°C was used. Scanning electron microscopy, Fourier transform infrared spectroscopy and energy-dispersive spectroscopy were used to elucidate the wear mechanisms. The results of the tests and observations were employed to construct a wear transition diagram, which provides a summary of tribological information including friction coefficient, wear coefficient and wear mechanisms as a function of temperature and load. The wear transition diagram for the sintered silicon carbide studied is divided into four regions plus one transition zone. At room temperature, under high loads and high environmental humidity, the tribological behaviour is controlled by tribochemical reactions between the silicon carbide surface and water vapour in the environment. Under low loads and at temperatures below 250°C, wear occurs by ploughing and polishing. At temperatures about 250°C and under low loads, tribooxidation and formation of cylindrical wear particles control the tribological behaviour. Wear occurs by microfracture when the load is increased above a critical value; and both the friction coefficient and the wear coefficient increase.  相似文献   

2.
采用普通磨削方式和超声振动辅助磨削方式对无压烧结SiC材料进行了磨削工艺实验,对不同磨削方式下磨削参数对磨削力比、表面损伤及亚表面损伤的影响进行了对比研究,并分析了超声振动磨削作用机制。实验结果显示,该实验中SiC材料去除主要以脆性去除为主,砂轮磨削力比随着磨削深度和进给速度的增加缓慢增加,随着主轴转速的增加略有减小;普通磨削时SiC工件亚表面损伤深度随着磨削深度、进给速度增加逐渐增加,而超声振动辅助磨削变化较小。与普通磨削相比,在相同的磨削参数下,超声振动辅助磨削的高频冲击使材料破碎断裂情况得到改善,且磨削力比减小近1/3,表面裂纹、SiC晶粒脱落、剥落等表面损伤较少,表面损伤层较浅,亚表面裂纹数量及深度都有较大程度降低,可以获得较为理想的表面质量。  相似文献   

3.
碳化硅陶瓷新型反应连接技术研究   总被引:1,自引:1,他引:0  
在碳化硅陶瓷反应连接工艺的基础上研究了一种新型的反应连接工艺,利用该工艺连接了自制的反应烧结碳化硅(RB-SiC)陶瓷。连接的RB-SiC陶瓷样品表面经过初步抛光后,测试了焊缝宽度、焊缝处的显微组织结构、连接层的力学性能和高低温实验后连接层对表面面形的影响。测试结果表明:利用新型反应连接工艺连接的RB-SiC陶瓷的焊缝宽度分布在54-77μm之间;焊缝处的显微组织结构非常均匀,接近基体材料;测试了十个样品的室温抗弯强度,平均值为307MPa,而且断裂都产生在母材上,说明焊缝处力学性能优异;高低温实验后,整块碳化硅陶瓷表面面形无变化,说明连接层的热学性能与母材一致,无残余应力。  相似文献   

4.
本文意在寻求双质量硅微机械陀螺仪正交校正最优方案。首先介绍了带有正交校正和检测力反馈梳齿的双质量硅微机械陀螺结构,量化分析了正交误差对输出信号的影响并进行了仿真,结果显示解调相角变化为±2°,200(°)/s的正交误差等效输入角速率可引起15(°)/s的输出信号变化。然后,对目前3种比较主流的硅微机械陀螺仪正交校正方法(电荷注入法(CIM)、正交力校正法(QFCM)和正交耦合刚度校正法(QCSCM))进行了实验研究,从理论上证明了这3种方法的可行性。对未加入正交校正环节的陀螺进行了实验,结果显示其左、右质量块输出的正交误差信号峰峰值分别为150mV和300mV。针对两质量块正交误差不等的实际问题提出了质量块单独校正的方案。采用CIM、QFCM和QCSCM对校正前零偏及其稳定性分别为-4.589(°)/s和378(°)/h的陀螺进行了实验校正,结果显示3种方法均可有效消除检测通道中正交信号,3种方法的零偏及零偏稳定性结果分别为-8.361(°)/s和423(°)/h,2.419(°)/s和82(°)/h,1.751(°)/s和25(°)/h,证明了正交耦合刚度校正法为3种方法中的最优方案。  相似文献   

5.
The conventional route for preparation of silicon carbide ceramics is by the use of pressureless sintering, hot pressing, or hot isostatic pressing of silicon carbide starting powders. High sintering temperatures (2073–2473 K) and the addition of sintering additives are normally used to enhance densification. These sintering additives, however, form second phases at grain boundaries which impair the mechanical properties of the material, particularly at high temperatures. It is therefore desirable that new processing routes are developed that overcome these difficulties. A proposed route is to use a polymeric pressure which can provide a Silicon carbide matrix as binding agent for silicon carbide powders, thus making the requirement for high temperatures and sintering additives unnecessary. This paper reports observations of the direct transformation of a polymeric precursor into amorphous Si–C, and crystalline SiC at low temperatures, and the use of this precursor as a binder for the production of SiC powder/ex-precursor SiC composites.  相似文献   

6.
Fractography studies have shown that the strength-determining flaws in silicon carbide monofilaments are generally at the core/silicon carbide interface or in the vicinity of the outside, carbon-based coating. In tungsten-cored monofilaments like DERA Sigma, the W/SiC flaws primarily determine the strength. Fracture is accompanied by brittle failure of the tungsten. The crack propagates simultaneously outwards through the silicon carbide, inwards through the tungsten and also around the W/SiC interface before being deflected into the tungsten or out through the silicon carbide. Experiments depositing boundary layers between the tungsten and silicon carbide have resulted in significantly different fracture behaviour. The tungsten fails in a ductile manner and the strength-determining flaws are located predominantly at the outside surface of the silicon carbide. This behaviour is discussed in terms of models proposed by E. Martin and W. Curtin. It is thought that the work will ultimately lead to a significantly stronger, tungsten-based monofilament.  相似文献   

7.
Two different types of silicon carbide (SiC) matrix composites, with either 10 wt% or 20 wt% silicon nitride (Si3N4) reinforcement, were fabricated to investigate the effect of pretreatment on the resulting composite micro-structure. The first type of composite was prepared from as-received α-SiC and α-Si3N4 powders, while the second type was prepared from powder compacts that had been deoxidized to eliminate surface silica on the powder particles. The composites were hot isostatically pressed in tantalum cans at 2373 K for 1h under a pressure of 200 MPa. Density measurements showed that full theoretical density was achieved for the composites prepared from the as-received powders, while much lower densities were obtained for the composites prepared from the deoxidized green compacts. Almost all of the α-SiC transformed into β-SiC, and almost all the α-Si3N4 transformed into α-Si3N4 in the composites made from the as-received powders, while in the composites made from the deoxidized material the α-SiC remained untransformed and both α-Si3N4 and β-Si3N4 phases were present in significant quantities. High-resolution transmission electron microscopy and Fresnel fringe imaging were used to identify the grain boundary and interphase boundary structure. Most interfaces were found to be covered with ? 1 nm thick amorphous intergranular films in the composites prepared from as-received powders, whereas most interfaces were found to be free of such amorphous intergranular films in the composites prepared from the deoxidized material. Taken together, the presence of intergranular films at the interfaces and the results from density measurements are consistent with the densification and reverse α → β-SiC transformation taking place in the composites made from as-received powders by a liquid-phase sintering route. An incomplete liquid-phase sintering mechanism is also able to explain the microstructure observed in the composites made from the deoxidized material.  相似文献   

8.
The selection of the right material for the mechanical stage of an electron beam lithography system is an important step in achieving the high accuracy required for submicron lithography. The material must be nonmagnetic, vacuum compatible, and strong enough for operation. It must possess mechanical properties to reduce static errors and dynamic errors, as well as electrical properties to minimize the E-beam deflection errors. After comparison of the most promising materials, silicon carbide is concluded to be the best material for an E-beam stage because of its low coefficient of thermal expansion, very high elastic modulus, light weight, and excellent hardness. Being semiconductive, it resolves both electric charge-up problems and beam deflection errors due to eddy current.  相似文献   

9.
A silicon carbide fibre-reinforced glass-ceramic composite, based upon a BaO–MgO–Al2O3–SiO2 (BMAS) matrix, has been used for a study of microstructural stability (specifically interface stability) after environmental exposure at elevated temperature. Characterization of the as-received material demonstrated the presence of a thin ‘carbon-rich’ interfacial layer between fibre and matrix, as typically observed in glass-ceramic/silicon carbide fibre composite systems. Samples have been subjected to heat-treatments in an oxidizing atmosphere at temperatures between 723 and 1473 K, for up to 500 h. Intermediate-temperature ageing, between 873 and 1073 K, results in strong fibre/matrix bonding, with consequent degradation of strength and composite ‘ductility’. This is due to oxidative removal of the carbon interfacial layer and subsequent oxidation of the fibre surface, forming a silica bridge. Carbon is retained at higher ageing temperatures due to the formation of a protective surface oxide scale at exposed fibre ends. Attempts to pretreat the BMAS composite at high temperature (1273–1473 K), designed to inhibit intermediate-temperature degradation via the formation of silica plugs at exposed fibre ends, has given mixed results due to the high residual porosity content in these materials, allowing paths of ‘easy’ oxygen ingress to be retained.  相似文献   

10.
The equilibrium adsorption of gas phase alcohol molecules has been proposed as a new means of in-use anti-stiction and lubrication for MEMS devices. Adhesion and friction of silicon oxide surfaces as a function of n-propanol vapor pressure in the ambient gas were invesitigated using atomic force microscopy. As the vapor pressure increases, the adsorbed n-propanol layer thickness increases. The adhesion and friction significantly decrease with very little addition of n-propanol vapor.  相似文献   

11.
为比较真实地模拟可动微机电器件侧面间的摩擦磨损状况,进而研究MEMS器件的摩擦磨损规律,设计和研制了一种基于单晶硅材料的微摩擦试验模块,利用微机械体硅工艺及键合技术,将摩擦磨损测试单元、加载单元以及微力传感元件集成在单一的芯片上。最后,在大气环境下借助数字光学显微镜和图像处理技术对该试验模块的静、动态摩擦因数及磨损状况进行了测试。试验结果表明:随着正压力的增加,该摩擦副的摩擦因数相应减小,在较长时间的摩擦过程中磨粒表面出现了比较严重的氧化现象。  相似文献   

12.
Toplisek T  Drazic G  Novak S  Kobe S 《Scanning》2008,30(1):35-40
A composite material made from continuous monolithic silicone carbide (SiC) fibers and a SiC-based matrix (SiC(f)/SiC), was prepared using a novel technique, i.e. adapted dip coating and infiltration of SiC fibers with a water suspension containing SiC particles and a sintering additive. This kind of material could be used in the first-wall blanket of a future fusion reactor. Using magnetron sputtering, the SiC fibers were coated with various thin layers (TiC, CrN, CrC, WC, DLC-diamond-like carbon) of the interface material by physical vapor deposition (PVD). Using scanning and transmission electron microscopy and microanalysis, detailed microstructural studies of the fiber-matrix interface were performed. Both samples, with coated and uncoated fibers, were examined under a load. The microcracks introduced by the Vickers indenter continued their path through the fibers, and thus caused the failure of the composite material, in the case of the uncoated fibers or deviated from their primary direction at the fiber-matrix interface in the case of the coated fibers.  相似文献   

13.
The nanoscale sensing and manipulation have become a challenging issue in micro/nanorobotic applications. In particular, a feedback sensor-based manipulation is necessary for realizing an efficient and reliable handling of particles under uncertain environment in a micro/ nano scale. This paper presents a piezoresistive MEMS cantilever for nanoscale force measurement in microrobotics. A piezoresistive MEMS cantilever enables sensing of gripping and contact forces in nanonewton resolution by measuring changes in the stress-induced electrical resistances. The calibration of a piezoresistive MEMS cantilever is experimentally carried out. In addition, as part of the work on nanomanipulation with a piezoresistive MEMS cantilever, the analysis on the interaction forces between a tip and a material, and the associated manipulation strategies are investigated. Experiments and simulations show that a piezoresistive MEMS cantilever integrated into a microrobotic system can be effectively used in nanoscale force measurements and a sensor-based manipulation.  相似文献   

14.
Convergent beam electron diffraction patterns of silicon from the gate channel region of a complementary metal‐oxide‐semiconductor transistor with recessed Si.82Ge.18 stressors were analysed using three zone axes: <230>, <340> and <670>. Values measured using these axes were compared with each other with regards to strain along the [] and the [001] directions. It was demonstrated that strain measurements made using all three axes showed reasonable agreement with each other: an increase in the [] compressive strain and a switch from compressive to tensile strain in the [001] with decreasing distance below the gate. It was also observed that the strain calculations using the <230> axis had the lowest uncertainty whereas the <670> axis allowed for measurements closest to the gate due to the improved lateral resolution at that tilt angle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号