共查询到4条相似文献,搜索用时 0 毫秒
1.
Effect of heat treatment on the sliding wear behaviour of aluminium alloy hard particle composite was studied under varying applied load and sliding speed, giving emphasis on the parameters such as wear rate, temperature rise, coefficient of friction and seizure pressure. Hardness is improved due to heat treatment irrespective of the material. Maximum hardness is noted when the materials are aged for 6 h. These facts have been discussed on the basis of nature of worn surface produced after wear. In the present investigation, aging time has been varied from 4 to 10 h at a regular increment of 2 h. 相似文献
2.
Using a pin-on-disc apparatus, the wear behavior of Cu–15Ni–8Sn alloy aged for different periods of time at 400 °C was investigated under dry condition. The results showed the wear rate was inversely proportional to the hardness of the alloy, but the maximum wear resistance was not consistent with maximum hardness. The alloy contained about 10% (volume) cells precipitated along grain boundaries had the lowest wear rate. The friction coefficient was constant for different hardness. SEM micrographs of the debris and pin revealed that the removal process of surface material involved subsurface deformation, crack nucleation, crack propagation and delamination of the material. 相似文献
3.
The unlubricated wear behaviour of explosive shock treated and, subsequently plasma nitrided Ti–6Al–4 V alloy was studied using a ball-on-disc wear tester. Plasma nitriding was carried out at three different temperatures (700, 800 and 900 °C) for 3, 6, 9 and 12 h. Plasma nitriding after explosive shock treatment enabled a reduction in the wear rate of two orders of magnitude. Detailed investigations of this improved wear performance dependent on the nitriding temperature and time were carried out. The friction and wear data showed a clear breakthrough transition from the nitrided layer to the core of the Ti–6Al–4 V alloy matrix. The lowest wear volume was obtained for the sample, nitrided at 900 °C for 12 h, especially at loads of 2.5, 5 and 7.5 N. Obviously, the hard nitride layers were intimately associated with low wear rate, providing a smooth low friction surface. The coefficient of friction reduced from 0.46 to 0.2 due to a thick and hard compound layer resulting from a high nitrogen diffusion rate caused by explosive shock treatment that expected to increase point defects in the alloy. Detailed examination of the wear tracks showed that plasma nitriding changes the mechanism of wear from one of adhesion for untreated Ti–6Al–4 V to both delamination and mild abrasive. 相似文献
4.
A micro-scale abrasive wear test, based on ball-cratering, has been used to evaluate the wear resistance of duplex and non-duplex (Ti,Al)N, TiN and Cr–N coatings. The term duplex is used here when plasma nitriding is followed by PVD coating. Coatings without the plasma nitriding stage are termed single-layered. Coating properties were evaluated by surface profilometry, hardness and scratch testing. All duplex coatings showed higher micro-abrasive wear resistance than their single-layered counterparts, with the duplex (Ti,Al)N coating achieving the best performance. After a certain number of ball revolutions, the coating material became worn through, exposing the substrate material. After this point, the presence of a hard nitrided case diminished the scratching action of the SiC abrasive particles. The experimental results also indicate that the choice of the PVD coating plays an important role in improving the micro-abrasive wear resistance. Apart from single-layered and duplex Cr–N coatings, all the other coating systems provided a higher micro-abrasive wear resistance than the uncoated substrate (hardened AISI H13 steel). The poor abrasive wear resistance recorded for the single-layered and duplex Cr–N coatings could be attributed to the hardness of the Cr–N being much lower than that of the SiC abrasive particles, which caused tearing of the coating with subsequent delamination. The wear pattern observed was found to change from surfaces characterised by grooves (uncoated substrate, single-layered TiN and Cr–N systems and duplex Cr–N system) to surfaces which exhibited multiply indented surfaces (single-layered and duplex (Ti,Al)N systems), indicating a transition between wear mechanisms. This transition was found to be dependent on the ratio between the hardness of the SiC abrasive particles and surface (coating) or subsurface hardness. By decreasing this ratio, the ability of the SiC abrasive particles to scratch the composite surface was reduced and the resistance to micro-scale abrasion was improved. 相似文献