共查询到19条相似文献,搜索用时 78 毫秒
1.
2.
C5.0算法在RoboCup传球训练中的应用研究 总被引:4,自引:0,他引:4
针对于RoboCup比赛中出现的传球精度不够准确的问题,通过对决策树学习方法的探讨,该文提出了一种用于RoboCup仿真球队中Agent学习传球技能的一种决策树方法。将C5.0即ID3的改进算法应用到Agent传球能力的训练中,它使得Agent能够根据场上的具体情况,把球成功传给队友。Agent在得到球的控制权之后,首先确定传球成功率最大的球员,然后并不直接执行传球的动作,而是调整Agent自身的准备动作以达到传球的最佳状态,最后进行传球的行为。仿真结果表明,该方法有效地提高了Agent的传球能力。 相似文献
3.
4.
针对非确定马尔可夫环境下的多智能体系统,提出了多智能体Q学习模型和算法。算法中通过对联合动作的统计来学习其它智能体的行为策略,并利用智能体策略向量的全概率分布保证了对联合最优动作的选择。在实验中,成功实现了智能体的决策,提高了AFU队的整体的对抗能力,证明了算法的有效性和可行性。 相似文献
5.
6.
7.
MAS(multi agent system)是解决复杂、动态、分布式智能应用问题的重要技术,RoboCup仿真比赛提供了一个测试各种MAS理论的平台.基于Agent个性设计并实现了RoboCup仿真球队.实验结果表明该方法比能力对等的合作更加默契,更能体现MAS的自适应性. 相似文献
8.
基于广义扩展优势关系的粗糙决策分析方法 总被引:3,自引:1,他引:2
针对信息不完全的偏好多属性决策问题,给出一种基于拓展粗糙集的决策分析方法.首先提出广义扩展优势关系的概念;然后在广义扩展优势关系下得到知识的粗糙近似,给出分类决策规则.对比分析证明,扩展优势关系和有限扩展优势关系都是广义扩展优势关系的特例.最后通过一个实例验证了所提出方法的可行性和有效性. 相似文献
9.
从粒计算的角度,经典的粗糙集是建立在单一的粒(等价关系)上的,把它推广到建立在优势关系上的多粒度粗糙集,定义了多粒度下的上下近似。通过对经典粗糙集的比较,得到了二粒度和多粒度下粗糙集的一些性质和结论。并在二粒度和多粒度下,对粗糙集里的边界、近似精度、优势度和综合优势度进行了研究。通过地震数据的例子说明了单粒度和多粒度之间的差异。 相似文献
10.
11.
证据理论和多粒度粗糙集模型的结合已成为知识挖掘中的热点研究之一,其建立的模型已被应用于不完备、覆盖、模糊等信息系统,但在直觉模糊决策信息系统中还未见相关讨论。首先,在直觉模糊决策信息系统中利用三角模和三角余模定义了3种优势关系,得到了3种优势类,并构造了广义优势关系多粒度直觉模糊粗糙集模型;其次,基于证据理论,讨论了广义多粒度直觉模糊粗糙集的信任结构;然后,通过定义粒度重要性和属性重要性给出了属性约简方法;最后,通过实例说明了该模型在处理直觉模糊决策信息系统时是有效的。 相似文献
12.
James J.H. Liou 《Information Sciences》2010,180(11):2230-2238
Market segmentation is a crucial activity in the present business environment. Data mining is a useful tool for identifying customer behavior patterns in large amounts of data. This information can then be used to help with decision-making in areas such as the airline market. In this study, we use the Dominance-based Rough Set Approach (DRSA) to provide a set of rules for determining customer attitudes and loyalties, which can help managers develop strategies to acquire new customers and retain highly valued ones. A set of rules is derived from a large sample of international airline customers, and its predictive ability is evaluated. The results, as compared with those of multiple discriminate analyses, are very encouraging. They prove the usefulness of the proposed method in predicting the behavior of airline customers. This study demonstrates that the DRSA model helps to identify customers, determine their characteristics, and facilitate the development of a marketing strategy. 相似文献
13.
14.
本文研究了一般关系下Vague集合的近似问题,建立了一般关系下粗糙Vague近似的框架。在分析经典的粗集理论、模糊集理论、Vague集理论三者关系的基础上,提出了一般关系下粗糙Vague集的概念,并定义了粗糙Vague近似算子,讨论了粗糙Vague的性质。本文的结果对进一步开展粗糙集Vague集的研究具有一定的意义。 相似文献
15.
16.
基于覆盖的粗糙模糊集的粗糙熵 总被引:2,自引:0,他引:2
覆盖约简是研究覆盖去冗余问题的一种有效方法。本文在基于最简覆盖的粗糙集模型的基础上,将粗糙度和粗糙熵的概念引入基于最简覆盖的粗糙模糊集,用来度量其不确定性程度;讨论了它们的一些性质,并通过实例说明粗糙熵比粗糙度更能精确地反映基于最简覆盖的粗糙模糊集的不确定性程度。 相似文献
17.
该文以Rough集数据分析技术(RSDA,RoughSetDataAnalysis)为基础,对关系数据库(RDB,relationaldatabase)和Rough集的关系进行了系统的研究。具体做法是,从Rough集与RDB产生的理论背景、关系与信息表的形式化语义、核心概念之间的关系、Rough度量与RRDM(roughrelationaldatabasemodel,简称RRDM)等方面对它们的关系进行了系统的、深入的探讨,并得出了相应的结论。 相似文献
18.
Krzysztof Dembczyski Roman Pindur Robert Susmaga 《Electronic Notes in Theoretical Computer Science》2003,82(4):84
Rough Sets Theory is often applied to the task of classification and prediction, in which objects are assigned to some pre-defined decision classes. When the classes are preference-ordered, the process of classification is referred to as sorting. To deal with the specificity of sorting problems an extension of the Classic Rough Sets Approach, called the Dominance-based Rough Sets Approach, was introduced. The final result of the analysis is a set of decision rules induced from what is called rough approximations of decision classes. The main role of the induced decision rules is to discover regularities in the analyzed data set, but the same rules, when combined with a particular classification method, may also be used to classify/sort new objects (i.e. to assign the objects to appropriate classes). There exist many different rule induction strategies, including induction of an exhaustive set of rules. This strategy produces the most comprehensive knowledge base on the analyzed data set, but it requires a considerable amount of computing time, as the complexity of the process is exponential. In this paper we present a shortcut that allows classifying new objects without generating the rules. The presented approach bears some resemblance to the idea of lazy learning. 相似文献
19.
An incremental algorithm generating satisfactory decision rules and a rule post-processing technique are presented. The rule induction algorithm is based on the Apriori algorithm. It is extended to handle preference-ordered domains of attributes (called criteria) within Variable Consistency Dominance-based Rough Set Approach. It deals, moreover, with the problem of missing values in the data set. The algorithm has been designed for medical applications which require: (i) a careful selection of the set of decision rules representing medical experience and (ii) an easy update of these decision rules because of data set evolving in time, and (iii) not only a high predictive capacity of the set of decision rules but also a thorough explanation of a proposed decision. To satisfy all these requirements, we propose an incremental algorithm for induction of a satisfactory set of decision rules and a post-processing technique on the generated set of rules. Userʼns preferences with respect to attributes are also taken into account. A measure of the quality of a decision rule is proposed. It is used to select the most interesting representatives in the final set of rules. 相似文献