共查询到20条相似文献,搜索用时 15 毫秒
1.
The present work has been undertaken to tailor Pt/Al 2O 3 catalysts active for NO oxidation even after severe heat treatments in air. For this purpose, the addition of Pd has been attempted, which is less active for this reaction but can effectively suppress thermal sintering of the active metal Pt. Various Pd-modified Pt/Al 2O 3 catalysts were prepared, subjected to heat treatments in air at 800 and 830 °C, and then applied for NO oxidation at 300 °C. The total NO oxidation activity was shown to be significantly enhanced by the addition of Pd, depending on the amount of Pd added. The Pd-modified catalysts are active even after the severe heat treatment at 830 °C for a long time of 60 h. The optimized Pd-modified Pt/Al 2O 3 catalyst can show a maximum activity limited by chemical equilibrium under the conditions used. The bulk structures of supported noble metal particles were examined by XRD and their surface properties by CO chemisorption and EDX-TEM. From these characterization results as well as the reaction ones, the size of individual metal particles, the chemical composition of their surfaces, and the overall TOF value were determined for discussing possible reasons for the improvement of the thermal stability and the enhanced catalytic activity of Pt/Al 2O 3 catalysts by the Pd addition. The Pd-modified Pt/Al 2O 3 catalysts should be a promising one for NO oxidation of practical interest. 相似文献
2.
Au–Pd/Al 2O 3 catalyst was prepared by modified impregnation method. It was found that the catalyst calcined in air at 473 K showed higher CO oxidation activity in comparison with the catalysts treated at other temperature. Nitrogen adsorption, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and X-ray absorption near edge structure spectroscopy (XANES) techniques were employed to study the relationship between the surface/bulk structures of these catalysts and their catalytic performance. The results indicated the higher activity was attributed to the smaller pore volume and co-existence of PdO and Au 0 in their surface. The formation of Au xPd y alloy was unfavorable for the catalytic reaction. 相似文献
3.
Polycylic aromatic hydrocarbons (PAHs) are listed as carcinogenic and mutagenic priority pollutants, belonging to the environmental endocrine disrupters. Most PAHs in the environment stem from the atmospheric deposition and diesel emission. Consequently, the elimination of PAHs in the off-gases is one of the priority and emerging challenges. Catalytic oxidation has been widely used in the destruction of organic compounds due to its high efficiency (or conversion of reactants), its economic benefits and good applicability. This study investigates the application of the catalytic oxidation using Pt/γ-Al2O3 catalysts to decompose PAHs and taking naphthalene (the simplest and least toxic PAH) as a target compound. It studies the relationships between conversion, operating parameters and relevant factors such as treatment temperatures, catalyst sizes and space velocities. Also, a related reaction kinetic expression is proposed to provide a simplified expression of the relevant kinetic parameters. The results indicate that the Pt/γ-Al2O3 catalyst used accelerates the reaction rate of the decomposition of naphthalene and decreases the reaction temperature. A high conversion (over 95%) can be achieved at a moderate reaction temperature of 480 K and space velocity below 35,000 h−1. Non-catalytic (thermal) oxidation achieves the same conversion at a temperature beyond 1000 K. The results also indicate that Rideal–Eley mechanism and Arrhenius equation can be reasonably applied to describe the data by using the pseudo-first-order reaction kinetic equation with activation energy of 149.97 kJ/mol and frequency factor equal to 3.26 × 1017 s−1. 相似文献
4.
In this study, a novel bifunctional catalyst IrFe/Al 2O 3, which is very active and selective for preferential oxidation of CO under H 2-rich atmosphere, has been developed. When the molar ratio of Fe/Ir was 5/1, the IrFe/Al 2O 3 catalyst performed best, with CO conversion of 68% and oxygen selectivity towards CO 2 formation of 86.8% attained at 100 °C. It has also been found that the impregnation sequence of Ir and Fe species on the Al 2O 3 support had a remarkable effect on the catalytic performance; the activity decreased following the order of IrFe/Al 2O 3 > co-IrFe/Al 2O 3 > FeIr/Al 2O 3. The three catalysts were characterized by XRD, H 2-TPR, FT-IR and microcalorimetry. The results demonstrated that when Ir was supported on the pre-formed Fe/Al 2O 3, the resulting structure (IrFe/Al 2O 3) allowed more metallic Ir sites exposed on the surface and accessible for CO adsorption, while did not interfere with the O 2 activation on the FeO x species. Thus, a bifunctional catalytic mechanism has been proposed where CO adsorbed on Ir sites and O 2 adsorbed on FeO x sites; the reaction may take place at the interface of Ir and FeO x or via a spill-over process. 相似文献
5.
Three different vanadium-modified Pd/Al 2O 3 catalysts were prepared and tested as catalysts for the deep oxidation of methane. Vanadium was added to the palladium catalyst by incipient wetness of palladium catalyst in order to modify its properties and improve its thermal stability and thioresistance. The behaviour of vanadium-modified catalysts depends on the concentration of this compound, being 0.5 wt.% the optimum amount. However, when strong catalyst poisons are present in the gas (SO 2), these modified catalysts do not show a better performance than unmodified catalyst. Bimetallic catalysts were tested with and without further reduction, being observed that reduced bimetallic catalysts perform worse than the non-reduced ones. 相似文献
6.
The reactivation of thermally sintered Pt/Al 2O 3 catalysts used in the simultaneous oxidation of CO and propene has been achieved by an oxychlorination treatment. The catalyst can be considered to model the active component of the catalytic converter fitted to diesel driven cars. Platinum crystallites redispersion was verified by XRD, H 2 chemisorption, TEM and FTIR. The extent of regeneration reflects the platinum particle redispersion achieved by such a treatment. Oxychlorination also introduced electronic effects in the Pt particle caused by the presence of chlorine at the Pt-Al 2O 3 interface but no detrimental result of this was observed in the oxidation reactions. The results indicate that the deactivation of the diesel oxidation catalysts (DOCs) can be reverted by this simple treatment resulting in a remarkable recovery of the catalytic activity. 相似文献
7.
The investigations focused on the influence of doping an alumina support with different base metal oxides on the catalytic performance of gold catalysts to oxidize glucose to gluconic acid. Sodium oxide and calcium oxide strongly enhanced the reaction rate for catalysts prepared by both the deposition–precipitation and incipient wetness method. Urea was used as the precipitation agent in the former. The total selectivity of the catalysts was not influenced by the dopants. TEM analysis revealed very small gold particles of less than 2 nm for sodium doped catalysts prepared by the two methods. 相似文献
8.
The performance of unpromoted and MO x-(M: alkali (earth), transition metal and cerium) promoted Au/Al 2O 3 catalysts have been studied for combustion of the saturated hydrocarbons methane and propane. As expected, higher temperatures are required to oxidize CH 4 (above 400 °C), compared with C 3H 8 (above 250 °C). The addition of various MO x to Au/Al 2O 3 improves the catalytic activity in both methane and propane oxidation. For methane oxidation, the most efficient promoters to enhance the catalytic performance of Au/Al 2O 3 are FeO x and MnO x. For C 3H 8 oxidation a direct relationship is found between the catalytic performance and the average size of the gold particles in the presence of alkali (earth) metal oxides. The effect of the gold particle size becomes less important for additives of the type of transition metal oxides and ceria. The results suggest that the role of the alkali (earth) metal oxides is related to the stabilization of the gold nanoparticles, whereas transition metal oxide and ceria additives may be involved in oxygen activation. 相似文献
9.
The catalytic activity of Pt on alumina catalysts, with and without MnO x incorporated to the catalyst formulation, for CO oxidation in H 2-free as well as in H 2-rich stream (PROX) has been studied in the temperature range of 25–250 °C. The effect of catalyst preparation (by successive impregnation or by co-impregnation of Mn and Pt) and Mn content in the catalyst performance has been studied. A low Mn content (2 wt.%) has been found not to improve the catalyst activity compared to the base catalyst. However, catalysts prepared by successive impregnation with 8 and 15 wt.% Mn have shown a lower operation temperature for maximum CO conversion than the base catalyst with an enhanced catalyst activity at low temperatures with respect to Pt/Al 2O 3. A maximum CO conversion of 89.8%, with selectivity of 44.9% and CO yield of 40.3% could be reached over a catalyst with 15 wt.% Mn operating at 139 °C and λ = 2. The effect of the presence of 5 vol.% CO 2 and 5 vol.% H 2O in the feedstream on catalysts performance has also been studied and discussed. The presence of CO 2 in the feedstream enhances the catalytic performance of all the studied catalysts at high temperature, whereas the presence of steam inhibits catalysts with higher MnO x content. 相似文献
10.
采用浸渍法制备Fe/Al_2O_3催化剂,采用BET、XRD和穆斯堡尔谱等进行结构和性能表征。以自制Fe/Al_2O_3为催化剂,应用催化湿式过氧化氢氧化技术处理COD为6 742 mg·L-1的兰炭废水,通过建立正交实验确定最佳实验条件,结果表明,在p H=4、过氧化氢添加量9.6 m L、反应时间150 min和反应温度80℃条件下,兰炭废水COD去除率达66.30%。对催化氧化后的废水进行GC-MS分析,确定最终氧化产物主要为乙酸。表明自制Fe/Al_2O_3催化剂具有优良的催化效果,并使大分子难降解有机污染物分解为易生化的小分子污染物,甚至被完全分解矿化。 相似文献
11.
The catalytic study of the gas phase oxidation of propylene has been carried out using heteropolyacids modified with gold. In addition, TiO 2 was used as the main support for heteropolyacids and gold. Propylene oxidation was performed under different reaction conditions and in all the cases water was introduced owing to the beneficial effect in the formation of oxygenated products. It was found that deposition methods of Au onto heteropolyacid and heat pre-treatment procedure significantly affected the activity and the distribution of the products: sol immobilization promoted the total oxidation, whereas impregnation method the selective oxidation mainly to acrolein and acetic acid, depending on other reaction conditions. Depositing Cs 2.5H 1.5PVMo 11O 40 salt onto a preformed 1.5%Au/TiO 2 a significant increase towards the formation of oxygenated products was observed at the expense of total combustion. In particular, acrolein was produced in a synergistic manner. FT-IR, XRD, XPS and TPR techniques were used for catalyst characterization. 相似文献
12.
The hydroformylation of olefins over supported gold catalysts in an autoclave reactor under mild conditions (100–140 °C, 3–5 MPa) has been studied. Over Au/AC (activated carbon), Au/PVP (polyvinylpyrrolidone), Au/Al 2O 3, Au/TiO 2, Au/Fe 2O 3, Au/ZnO, Au/CeO 2 and Co 3O 4, 1-olefin mainly remained unchanged and the major products were isomerized olefins or hydrogenated paraffin. In contrast, Au nanoparticles deposited on Co 3O 4 led to remarkably high catalytic activities in hydroformylation reaction with selectivities above 85% to desired aldehydes. The hydroformylation of olefins proceeds preferentially at temperatures below 140 °C, above which the reactions of olefins gradually shifted to isomerization and then to hydrogenation. It appeared that the activity and selectivity of hydroformylation reaction strongly depend on the molecular structure of olefins, which could be ascribed to steric constraints as internal olefins are relatively inappropriate to form alkyl group and subsequent acyl group by insertion of CO. The Au/Co 3O 4 catalyst can be recycled by simple decantation with slight decrease in catalytic activity along with an increase in recycle times, which is a great advantage over homogeneous catalysts. The role of gold nanoparticles can be assumed to dissociate hydrogen molecule into atomic species which reduce Co 3O 4 to Co metal under mild reaction conditions. 相似文献
13.
Monodispersed nano-Au/γ-Al 2O 3 catalysts for low-temperature oxidation of CO have been prepared via a modified colloidal deposition route, which involves the deposition of dodecanethiolate self-assembled monolayer (SAM)-protected gold nanoparticles (C 12 nano-Au) in hexane on γ-Al 2O 3 at room temperature. The diameter of the gold nanoparticles deposited on the support is 2.5 ± 0.8 nm after thermal treatment, and their valence states comprise both the metallic and oxidized states. It is found that the thermal treatment temperature affects significantly the catalytic activity of the catalysts in the processing steps. The catalyst treated at 190 °C exhibits considerably higher activity as compared to catalysts treated at 165 and 250 °C. A 2.0-wt.% nano-Au/γ-Al 2O 3 catalyst treated at 190 °C for 15 h maintains the catalytic activity at nearly 100% CO oxidation for at least 800 h at 15 °C, at least 600 h at 0 °C, and even longer than 450 h at −5 °C. Evidently, the catalysts obtained using this preparation route show high catalytic activity, particularly at low temperatures, and a good long-term stability. 相似文献
14.
A Pt/Al 2O 3 catalyst prepared by incipient wetness impregnation was used as a diesel oxidation model catalyst and tested in the simultaneous total oxidation of CO and C 3H 6. Sulphur incorporation by wet impregnation results in deactivation of the Pt/Al 2O 3 catalyst in both oxidation reactions. Characterization of the catalysts by evolved gas analysis by mass spectrometry (EGA-MS), X-ray diffraction (XRD), isotherm of adsorbed nitrogen, X-ray photoelectron spectroscopy (XPS), infrared spectroscopy of probe molecules (pyridine and carbon monoxide) and finally temperature-programmed surface reaction (O 2-TPSR of chemisorbed CO) demonstrated that the formation of aluminium sulphate modifies the acidic properties of the support and the electronic properties of the platinum particles. Thus, new Brønsted acid sites are formed and, moreover, the capacity of the Pt particles to chemisorb CO and O 2, the latter as strongly chemisorbed O species, is seriously deteriorated. The alteration of the electronic properties of the particles (they become electronically deficient) is related to the modification of the acidic properties of the support. Treatment of the deactivated catalysts by a reductive treatment at 873 K resulted in the removal of the sulphur due to decomposition of the aluminium sulphate. Thus, the original acidic properties of the support and the electronic properties of the Pt particles were largely recovered and a high degree of catalytic reactivation was achieved. 相似文献
15.
The kinetics of citral hydrogenation in ethanol over an Ni/Al 2O 3 catalyst was studied in a slurry reactor operating at atmospheric pressure and at a temperature range of 60–77°C. Citronellal was the primary reaction product, whereas the amounts of unsaturated alcohols were very minor. Citronellol was the dominating product, generated mainly through the hydrogenation of the carbonyl group of citronellal. Based on the experimental data, a kinetic model was developed for hydrogenation. The model comprises competitive and rapid adsorption steps as well as rate-determining hydrogenation steps. The mass transfer limitation of hydrogen was included in the mathematical model. The kinetic parameters and the mass transfer parameter of hydrogen were estimated from the experimental data. A comparison of the model predictions with the experimental data revealed that the proposed kinetic approach gave a satisfactory reproduction of the data. 相似文献
16.
The physico-chemical properties and activity of Ce-Zr mixed oxides, CeO 2 and ZrO 2 in CO oxidation have been studied considering both their usefulness as supports for Au nanoparticles and their contribution to the reaction. A series of Ce 1−xZr xO 2 ( x = 0, 0.25, 0.5, 0.75, 1) oxides has been prepared by sol–gel like method and tested in CO oxidation. Highly uniform, nanosized, Ce-Zr solid solutions were obtained. The activity of mixed oxides in CO oxidation was found to be dependent on Ce/Zr molar ratio and related to their reducibility and/or oxygen mobility. CeO 2 and Ce 0.75Zr 0.25O 2, characterized by the cubic crystalline phase show the highest activity in CO oxidation. It suggests that the presence of a cubic crystalline phase in Ce-Zr solid solution improves its catalytic activity in CO oxidation. The relation between the physico-chemical properties of the supports and the catalytic performance of Au/Ce 1−xZr xO 2 catalysts in CO oxidation reaction has been investigated. Gold was deposited by the direct anionic exchange (DAE) method. The role of the support in the creation of catalytic performance of supported Au nanoparticles in CO oxidation was significant. A direct correlation between activity and catalysts reducibility was observed. Ceria, which is susceptible to the reduction at the lowest temperature, in the presence of highly dispersed Au nanoparticles, appears to be responsible for the activity of the studied catalysts. CeO 2-ZrO 2 mixed oxides are promising supports for Au nanoparticles in CO oxidation whose activity is found to be dependent on Ce/Zr molar ratio. 相似文献
17.
The M–Na–Mn/SiO 2 nanocatalysts (M = W, Mo, Nb, V, Cr) were synthesized with the size of 12–92 nm by incipient wetness impregnation method to study the effect of different promoters on the catalytic performance in the oxidative coupling of methane. The results at 1 atm, 1048 K, 2500 ml h ?1 g ?1, and CH 4/O 2/N 2 = 2/2/1 revealed that C 2 selectivity was significantly increased (31.6%) in the order of W > Mo > Nb > Cr > V whereas moderate enhancement (12.6%) was observed in the CH 4 conversion in the order of W > Cr > Nb > Mo > V. The results of the characterization techniques (Raman, FT-IR, BET, TGA/DTA and XRD) demonstrated that Mn 2O 3 and α-cristobalite were the predominant species and active sites in the nanocatalyst surface and Na 2MoO 4, Na 2WO 4 and Mn 2O 3 crystalline phases contributed to achieving high selectivity of C 2 products. The redox mechanism involving two metal sites such as Mn 3+/2+ and W 6+/5+ or Mn 3+/2+ and Mo 6+/5+ was found to be the most compatible route with the OCM reaction path in which CH 4 and O 2 adsorption was the controlling step. 相似文献
18.
A series of unsupported MoS 2 catalysts with or without Al 2O 3 modification was prepared using a modified thermal decomposition approach. The catalysts were tested for the methanation of carbon monoxide and the optimum one has 25.6 wt-% Al 2O 3 content. The catalysts were characterized by nitrogen adsorption measurement, X-ray diffraction and transmission electron microscopy. The results show that adding appropriate amount of Al 2O 3 increases the dispersion of MoS 2, and the increased interaction force between MoS 2 and Al 2O 3 can inhibit the sintering of active MoS 2 to some extent. 相似文献
19.
采用等体积浸渍法制备一系列Co负载量不同的Co/Al 2O 3催化剂,用于乙酰丙酸液相催化加氢制γ-戊内酯反应。采用X射线衍射仪和透射电镜对Co/Al 2O 3催化剂进行表征,考察Co负载量、反应温度、反应压力和催化剂用量等对乙酰丙酸液相催化加氢反应的影响。结果表明,在Co负载质量分数15%、反应温度140 ℃、反应压力4.0 MPa和催化剂用量为反应物总质量的20%条件下,以甲醇为溶剂,反应6 h,乙酰丙酸转化率100%,γ-戊内酯选择性80.4%。催化剂重复使用6次仍具有较好的催化性能。 相似文献
20.
The adsorption of HCN on, its catalytic oxidation with 6% O 2 over 0.5% Pt/Al 2O 3, and the subsequent oxidation of strongly bound chemisorbed species upon heating were investigated. The observed N-containing products were N 2O, NO and NO 2, and some residual adsorbed N-containing species were oxidized to NO and NO 2 during subsequent temperature programmed oxidation. Because N-atom balance could not be obtained after accounting for the quantities of each of these product species, we propose that N 2 and was formed. Both the HCN conversion and the selectivity towards different N-containing products depend strongly on the reaction temperature and the composition of the reactant gas mixture. In particular, total HCN conversion reaches 95% above 250 °C. Furthermore, the temperature of maximum HCN conversion to N 2O is located between 200 and 250 °C, while raising the reaction temperature increases the proportion of NO x in the products. The co-feeding of H 2O and C 3H 6 had little, if any effect on the total HCN conversion, but C 3H 6 addition did increase the conversion to NO and decrease the conversion to NO 2, perhaps due to the competing presence of adsorbed fragments of reductive C 3H 6. Evidence is also presented that introduction of NO and NO 2 into the reactant gas mixture resulted in additional reaction pathways between these NO x species and HCN that provide for lean-NO x reduction coincident with HCN oxidation. 相似文献
|