首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 74 毫秒
1.
为优化密闭鼓风炉的操作参数,建立了锌产量的实时预报模型。该模型采用分类SMO方法训练支持向量机回归模型,并根据若干步的误差来在线校正模型参数,对锌产量进行多步预报,以及时调整操作参数,并能在线学习预报模型。该预报模型的工业仿真表明在只有较少的样本数的情况下,在有效误差范围内能达到90%,且具有很好的实时性。该模型已应用于密闭鼓风炉操作优化与故障诊断系统,能较好地指导生产。  相似文献   

2.
基于支持向量机故障诊断方法   总被引:1,自引:0,他引:1  
支持向量机是一种基于统计学习理论的机器学习算法,它能在训练样本很少的情况下达到很好的分类效果.本文以双螺杆挤出机为例,介绍了基于支持向量机的多故障分类器,探讨了"成对分类"与"一类对多类"两种多类分类算法的应用.诊断实例表明,基于支持向量机的多故障分类器对设备故障具有很好的分类效果.  相似文献   

3.
支持向量机在模拟电路故障诊断中的应用   总被引:1,自引:0,他引:1  
谢保川  刘福太 《计算机仿真》2006,23(10):167-170,220
故障诊断发展的瓶颈之一是故障样本的缺乏,而不仅在于诊断方法本身。支持向量机是建立在结构风险最小原则基础上,专门针对小样本情况的,其目标是得到现在信息下的最优值而不仅仅是样本数趋于无穷大时的最优值。它能在训练样本很少的情况下达到很好的分类效果,从而为故障诊断技术向智能化发展提供了新的途径。介绍了支持向量机的二值分类算法,以支持向量机二值分类为基础,构建了基于支持向量机的多值分类器并应用于模拟电路故障诊断。以两管视频放大器的多种故障分类为例,进行了实际应用验证。结果表明,该诊断方法具有算法简单、可对故障在线分类,有很好的分类能力和较高的计算效率,不需要对原始数据进行预处理就可达到满意的效果。  相似文献   

4.
支持向量机在网络故障诊断中的应用研究   总被引:4,自引:0,他引:4  
吴静  周建国  晏蒲柳 《计算机工程》2004,30(22):44-46,131
支持向量机是一种解决小样本、非线性、高维问题的机器学习算法,它为网络故障诊断向智能化方向发展提供了新的途径。介绍了支持向量机的基本原理,并且以实验网中采集的数据为例进行了实验,对实验过程和结果进行了说明和分析。  相似文献   

5.
支持向量机在机械故障诊断中的应用研究   总被引:20,自引:2,他引:20  
在机械故障诊断中,通常不具备有大量的故障样本,因此,制约了故障诊断技术向智能化方向发展。而基于统计学习理论(SLT)的支持向量机(SVM)方法正好克服了这方面的不足。统计学习理论是专门研究少样本情况下的统计规律及学习方法的理论。SLT理论和SVM方法为故障诊断技术向智能化发展提供了新的途径。该文讨论了支持向量机在故障诊断领域中应用的分类算法。并以滚动轴承的振动信号为例进行了试验论证。试验表明:SVM方法对具有少样本的故障诊断领域具有很强的适应性。  相似文献   

6.
支持向量机在多类分类问题中的推广   总被引:51,自引:4,他引:51  
支持向量机(SVMs)最初是用以解决两类分类问题,不能直接用于多类分类,如何有效地将其推广到多类分类问题是一个正在研究的问题。该文总结了现有主要的支持向量机多类分类算法,系统地比较了各算法的训练速度、分类速度和推广能力,并分析它们的不足和有待解决的问题。  相似文献   

7.
支持向量机在局域网故障诊断中的应用   总被引:1,自引:0,他引:1  
研究局域网故障诊断问题.由于当前局域网故障诊断方法存在诊断速度慢和不确定性等缺陷,为了能够更准确、有效快速地排除局域网故障,将支持向量机方法引入到对局域网的故障诊断中.对标准支持向景机原理进行了深入分析,针对参数优化过程中存在的速度快,很难找到最优参数的难题,提出了采用遗传算法对支持向景机进行改进,将改进前后的支持向量机用于局域网的故障诊断中.仿真结果表明,改进后的支持向量机能够更有效快速地完成对局域网的故障诊断,为局域网故障诊断的方法设计提供了参考.  相似文献   

8.
提出一种基于支持向量机(SVM)多类分类的变压器故障诊断方法.根据SVM理论建立变压器故障预测数学模型,应用决策二叉树方法建立诊断模型,通过Matlab对各节点处的支持向量机进行训练及仿真,最终得到了变压器故障分类的结果.仿真结果表明,该方法对变压器故障类型能较为准确地分类.  相似文献   

9.
支持向量机在网络故障诊断中的应用   总被引:4,自引:0,他引:4  
研究网络故障诊断问题,保证网络可靠性运行效率,针对网络故障是一个非线性、小样本数据,但是传统网络故障诊断方法是基于线性、大样本数据,导致网络故障诊断准确率较低.为了提高网络故障诊断准确率,将专门解决小样本、非线性问题的最小二乘支持向量机( LSSVM)应用到网络故障诊断中,将引起故障的因素作为LSSVM的输入,网络故障类型作为LSSVM输出,通过LSSVM的学习,建立网络故障诊断模型,最后采用建立的LSSVM模型对网络故障样本进行诊断.仿真结果表明,LSSVM网络故障诊断准确率明显高于其它网络故障诊断方法,并证明是一种网络故障诊断有效手段.  相似文献   

10.
传统的支持向量机(SVM)是两类分类问题,如何有效地将其推广到多类分类问题仍是一项有待研究的课题。本文在对现有主要的四种多类支持向量机分类算法讨论的基础上,结合文本分类的特点,详细介绍了决策树支持向量机和几种改进多类支持向量机方法在文本分类中的应用。  相似文献   

11.
支持向量机(Support vector machine, SVM)是利用离在线数据自动建立故障诊断模型的智能方法,它在多故障诊断时, 必须先进行多分类扩展. 决策导向无环图(Decision directed acyclic graph, DDAG)法是一种性能优秀的多分类扩展策略, 但该方法的决策结果与结点的排部密切相关, 而其结点的排部却是主观的, 影响了诊断的正确率. 本文提出一种根据故障数据的空间分布来优化结点排部的方法, 它能够提高支持向量机诊断的正确率. 采用该方法扩展的多分类支持向量机在变压器故障诊断中获得良好效果.  相似文献   

12.
介绍了支持向量机(SVM)理论的基本概念、原理及其学习算法,分析了基于传统的专家系统理论的故障诊断系统在知识获取、知识表达及推理能力等方面的缺陷,提出了构造多重支持向量机(MSVM)模型解决舰船故障诊断问题的设想,开发了一套故障诊断仿真系统。  相似文献   

13.
支持向量机理论简单, 实用性很强, 被大量应用于故障诊断问题中. 在分析支持向量机参数对分类结果影响的过程发现, 不恰当的参数选择往往带来较差的分类结果. 采用启发式优化方法可以避免人为选择的不足, 但单纯以等效间隔距离为寻优目标又会较大概率出现“过学习”现象. 为降低整体结构风险, 将等效间隔距离、支持向量数量和错分率等同时作为优化目标, 提出了一种基于粒子群的多目标支持向量机方法, 并采用定时重启、动态学习因子等策略提升算法全局寻优能力. 最后将其应用于多故障强关联耦合的复杂柴油机故障诊断问题中. 实验结果表明, 该方法可以有效解决少样本、不完备或不确定征兆的柴油机异响故障诊断问题, 筛选得到的综合最优解更符合人们的期望.  相似文献   

14.
基于支持向量机的非线性系统故障诊断   总被引:29,自引:1,他引:29  
胡寿松  王源 《控制与决策》2001,16(5):617-620
提出了联想度的概念,并由此设计出一种自组织模糊CMAC(SOFCMAC)及其学习算法,证明了SOFCMAC能以任意精度对非线性特性一致逼近。该网络具有学习速度快,逼近精度高等特点,用该SOFCMAC作为非线性系统观测器而生成残差,通过支持向量诊断器得到故障检测与诊断结果。对某型歼击机的结构故障进行诊断,仿真结果表明了该方法的有效性。  相似文献   

15.
支持向量机(SVM)作为当前新型的机器学习方式,凭借解决小样本问题、高维问题和局部极值问题等方面的优越性,在当前故障诊断方面有突出的表现;文章根据对支持向量机的研究,发现其在分类模型参数选择上存在困难,为此,提出利用改进粒子群算法优化的办法,解决粒子群前期收敛速度过快导致后期容易优化不均的现象;通过粒子群算法优化与支持向量机分类模型结合,以轴承故障检测和诊断为例,分析次方法的优越性和提高支持向量机在故障诊断过程中的精准度;通过实际检测得出,这种算法优化的方法改进的支持向量机对于聚类性较差的故障分类具有很好的诊断功能。  相似文献   

16.
研究利用支持向量机对发动机的两类故障——失速和喘振进行识别。介绍了支持向量机理论,选取适当的学习算法、惩罚因子和核函数,建立了支持向量机,并采用4组已知故障模式的数据对其进行训练和测试,之后对另外两组数据进行仿真识别,仿真结果与实际故障模式一致。  相似文献   

17.
基于支持向量机的涡轮泵故障诊断方法研究   总被引:1,自引:0,他引:1  
针对涡轮泵的几种典型常见故障,应用支持向量机(SVM)构造多元分类器,解决故障诊断等多分类问题,在此基础上建立了基于支持向量机的故障诊断模型。试验结果表明,与神经网络相比,采用支持向量机进行故障诊断可得到更高的精度,表现出较好的分类和抗噪能力,而且效率高于神经网络,说明该方法是有效、可行的。  相似文献   

18.
最小二乘支持向量机在故障诊断中的应用   总被引:1,自引:0,他引:1  
为了提高机械设备故障诊断的精度,将小波包分析与最小二乘支持向量机进行了有机的结合。首先对故障信号功率谱进行小波分解,简化了故障特征向量的提取。然后提出了一种基于最小二乘支持向量机的故障诊断模型,用二次损失函数取代支持向量机中的不敏感损失函数,将不等式约束条件变为等式约束,从而将二次规划问题转变为线性方程组的求解,用最小二乘法实现了支持向量机算法,并提出对核函数的σ参数进行动态选取,提高了诊断的准确率。仿真结果表明该模型具有较强的非线性处理和抗干扰能力。  相似文献   

19.
基于最小二乘支持向量机的故障诊断方法   总被引:1,自引:1,他引:1  
提出了一种小波包分析与最小二乘支持向量机相结合的机械设备故障诊断模型.首先对故障信号功率谱进行小波分解,简化了故障特征向量的提取,然后采用最小二乘支持向量机进行故障诊断.在该模型中,用二次损失函数取代支持向量机中的不敏感损失函数,将不等式约束条件变为等式约束,从而将二次规划问题转换为线性方程组的求解,并提出对核函数的σ参数进行动态选取.仿真结果表明:该模型可以取得较高的故障诊断准确率.  相似文献   

20.
随着航空电子系统的不断发展,复杂性和关键性不断增强,其故障的实时在线诊断越来越受到重视;针对电子系统在故障诊断中表现出的非线性、复杂性、强干扰性和多样性的特点,提出采用支持向量机进行航空电子系统的故障诊断;同时,采用粒子群优化(PSO)算法实现支持向量机的参数寻优,以提高其参数选择的效率,避免人为选择参数的不足;仿真实验表明,该方法融合航空电子系统的多点测试信息,结构简单时效性高,故障检测正确率达到97.5%,平均故障识别正确率达到96.9%,适用于信息融合型的航空电子系统在线智能故障诊断.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号