首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Two types of aromatic polyurethanes, poly(hexamethylene phenyl dicarbamate) (PUH6) and poly(heptamethylene biphenylene dicarbamate) (PUB7) have been synthesized by the polycondensation method. Structural, pyroelectric and dielectric properties of these polyurethanes were studied. The pyroelectric activity was studied in the temperature range from room temperature to 120°C for poled samples of both polyurethanes. The temperature dependence of the pyroelectric constant of both polyurethanes vanished around their glass transition temperatures. The experimental results given in this paper suggest that the pyroelectric behavior is possibly attributed to orientation of the urethane dipole in the amorphous phase. The pyroelectric coefficients obtained are 13 and 15 μm-2K-1 for the PUH6 and PUB7 samples, respectively  相似文献   

2.
The effect of n-type modulation doping as well as growth temperature on the threshold current density of 1.3-μm InAsP strained multiple-quantum-well (MQW) lasers grown by gas-source molecular beam epitaxy (GSMBE) was investigated for the first time. We have obtained threshold current density as low as 250 A/cm2 for 1200-μm long devices. The threshold current density per well for infinite cavity length Jth/Nw∞ of 57 A/cm2 was obtained for the optimum n-doping density (ND=1×1018 cm-3) and the optimum growth temperature (515°C for InP and 455°C for the SCH-MQW region), which is about 30% reduction as compared with that of undoped MQW lasers. A very low continuous-wave threshold current of 0.9 mA have been obtained at room temperature, which is the lowest ever reported for long-wavelength lasers using n-type modulation doping, and the lowest results grown by all kinds of MBE in the long-wavelength region. The differential gain was estimated by the measurement of relative intensity noise. No significant reduction of differential gain was observed for n-type MD-MQW lasers as compared with undoped MQW lasers. The carrier lifetime was also reduced by about 33% by using n-type MD-MQW lasers. Both reduction of the threshold current and the carrier lifetime lead to the reduction of the turn-on delay time by about 30%. The 1.3-μm InAsP strained MQW lasers using n-type modulation doping with very low power consumption and small turn-on delay is very attractive for laser array application in high-density parallel optical interconnection systems  相似文献   

3.
Reflection second-harmonic generation from the polished waveguide end face is used to investigate the second-order nonlinear optical properties of as-exchanged and annealed proton-exchanged (PE) waveguides in different HxLi1-xNbO3 phases. A detailed correlation is done between the nonlinear properties, the processing conditions, the refractive index changes, and the optical losses of the waveguides. It is found that for the direct PE samples, where the β4, β3, and β1 phases are generated at the surface, the nonlinearity in the guide is strongly reduced by more than 85% of its bulk value, while for waveguides prepared in the β2 phase, the nonlinear coefficient is about 55% of the bulk one. A consequence is that the step-like βi-phase PE LiNbO3 waveguides with large refractive index increase are advantageous for efficient SHG in Cherenkov configuration. The nonlinearity, strongly reduced after the initial proton exchange, is found to be restored and even increased after annealing. However, this apparent increase of the nonlinearity is accompanied by a strong degradation of the quality of the second-harmonic generation reflected beam in the region of initial waveguides due to beam scattering. The graded proton exchange technique and dilute melt proton exchange have been shown to produce high-quality waveguides with essentially undergraded nonlinear optical properties. It has been also shown that the nonlinear properties of annealed proton exchanged LiNbO3 waveguides can be effectively recovered by the reverse proton exchange technique. The results obtained are important for the design, fabrication, and optimizing of guided-wave nonlinear optical devices in LiNbO3  相似文献   

4.
The pumping and gain properties of Yb3+-doped Sr5 (PO4)3F (Yb:S-FAP) are reported. Using a tunable, free running 900-nm Cr:LiSAF oscillator as a pump source for a Yb:S-FAP rod, the saturation fluence for pumping was measured to be 2.2 J/cm2 based on either the spatial, temporal, or energy transmission properties of the Yb:S-FAP rod. The emission peak of Yb:S-FAP (1047.5 nm in air) is shown to overlap with that of Nd:YLiF4 (Nd:YLF) to within 0.1 nm, rendering Yb:S-FAP suitable as an effective power amplifier for Nd:YLF oscillators. The small signal gain, under varying pumping conditions, was measured with a cw Nd:YLF probe laser. These measurements implied emission cross sections of 6.0×10-20 and 1.5×10-20 cm 2 for π and σ polarized light. Respectively, which fall within the error limits of the previously reported values of 7.3×10-20 and 1.4×10-20 cm2 for π and σ polarized light, obtained from purely spectroscopic techniques. The effects of radiation trapping on the emission lifetime have been quantified and have been shown to lead to emission lifetimes as long as 1.7 ms, for large optically dense crystals. This is substantially larger than the measured intrinsic lifetime of 1.10 ms. Yb:S-FAP crystal boules up to 25×25×175 mm in size, which were grown for the above experiments and were found to have acceptable loss characteristics (<~1%/cm) and adequately large laser damage thresholds at 1064 nm (~20 J/cm2 at 3 ns). Overall, diode-pumped Yb:S-FAP amplifiers are anticipated to offer a viable means of amplifying 1.047-μm light, and may be particularly well suited to applications sensitive to overall laser efficiencies, such as inertial confinement fusion energy applications  相似文献   

5.
To achieve a compact and reliable design of electrical equipment for the present day requirements, there is an urgent need for better and smart insulating materials and in this respect, the reported enhancements in dielectric properties obtained for polymer nanocomposites seems to be very encouraging. To further understand the dielectric behavior of polymer nanocomposites, this experimental work reports the trends of dielectric permittivities and tan delta (loss tangent) of epoxy nanocomposites with single nano-fillers of Al2O3 and TiO2at low filler concentrations (0.1%, 0.5%, 1% & 5%) over a frequency range of 1 MHz-1 GHz. Results show that the nanocomposites demonstrate some very different dielectric characteristics when compared to those for polymer microcomposites. Unlike the usual expectations of increasing permittivity with increasing filler concentration in polymer microcomposites, it has been seen that up to a certain nano-filler concentration and depending on the permittivity of the nano-filler, the permittivities of the epoxy nanocomposites are less than that of the unfilled epoxy at all the measured frequencies. This suggests that there is a very strong dependence of the filler concentration and nano-filler permittivity on the final permittivity of the nanocomposites at all these frequencies. But, in the case of tan delta behavior in nanocomposites, significant effects of filler concentrations were not observed with both Al2O3 and TiO2 fillers. Tan delta values in nanocomposites with Al2O3 fillers are found to be marginally lower at all filler concentrations when compared with the value for unfilled epoxy. But, in TiO2Oepoxy nanocomposites, although the variations in tan delta are not significant with respect to unfilled epoxy, some interesting trends are observed with respect to the frequencies of measurement.  相似文献   

6.
The layered chalcogenide semiconductor GaSe has been grown under various crystal growth conditions for optimum performance for tunable terahertz (THz) wave generation and broadband THz detection. Low-temperature photoluminescence (PL), Raman spectroscopy, optical absorption/transmission, electrical charge transport property measurements, and THz time-domain spectroscopy (TDS) have been used to characterize the grown crystals. It is observed that indium doping enhances hardness of the grown GaSe crystals, which is very useful for processing and fabricating large-area devices. GaSe crystals have demonstrated promising characteristics with good optical quality (absorption coefficient les0.1 cm-1 in the spectral range of 0.62-18 mum), high dark resistivity (ges109 Omega cm), wide bandgap (2.01 eV at 300 K), good anisotropic (parand perp) electrical transport properties (mue/h, taue/h, and mutaue/h) and long-term stability. The THz emission measurements have shown that the GaSe crystals are highly efficient for broadband tunable THz sources (up to 40 THz), and sensors (up to 100 THz). Additionally, new THz frequencies (0.1-3 THz) have been observed for the first time from an anisotropic binary and a ternary semiconductor crystal. Details of characterizations as well as optimum crystal growth conditions including simulation and computer modeling are described in this paper.  相似文献   

7.
Near-infrared (NIR) photo- and electroluminescence (PL and EL) of Si nanocrystals buried in Si-rich SiOx, film, and their correlation with the structural phase transformation and the varied oxygen composition of SiOx, are investigated. By detuning the N2O flowing ratio (YN 2 O = [N2O/(N2O + SiH4)] times 100%) from 93% to 80% during plasma-enhanced chemical vapor deposition growth, the oxygen composition ratio of the Si-rich SiOx, can be adjusted from 1.64 to 0.88. The grazing incident X-ray diffraction and X-ray photoelectron spectroscopy spectra indicate that the SiOx, transforms its structural phase from Si + SiO2 isomer to Si + SiO + SiO2 isomer. With O/Si ratio >1.24, the SiOx, matrix becomes SiO2 isomer, whereas the SiOx, structure approaches SiO phase at O/Si ratio that is nearly 1.0. The formation of SiO matrix in SiOx, grown at YN 2 O below 85% reduces the precipitated Si nanocrystal density from 2.8 times 1018 to 7 times 1016 cm-3, and monotonically attenuates the NIR PL by one order of magnitude. Such a structural phase transformation from SiO2 to SiO in SiOx with lower O/Si ratio causes the degradation in EL power conversion efficiency and external quantum efficiency (EQE). Maximum EL power of 0.5 muW and EQE of 0.06% are obtained from MOSLED made on SiOx, with optimized O/Si ratio of 1.24.  相似文献   

8.
碱性吸附剂脱除SO3技术在大型燃煤机组中的应用   总被引:1,自引:0,他引:1  
为解决燃煤机组空气预热器(简称空预器)堵塞、烟道腐蚀、硫酸氢铵粘结除尘设备、烟囱蓝羽等问题,应对未来严格的SO3排放标准,研究了碱性吸附剂脱除SO3技术。对比了碱性吸附剂干粉注射系统与浆液注射系统的技术特征;研究了不同碱性吸附剂的适用范围及其在中国的资源储量和价格;以燃煤硫分1%的600 MW机组为例,分析了吸附剂注射系统的技术经济性。结果表明:碱性吸附剂注射技术是解决SO3污染及相关问题的有效方法;不同吸附剂在适合的位置注射均能满足SO3脱除率的要求,注射位置和经济性是影响技术路线确定的关键;浆液注射系统年运行费用约为干粉注射系统的2.9倍;在中国应用的干粉注射系统推荐采用Ca(OH)2或MgO等吸附剂,Ca(OH)2注射位置可选择空预器进出口,MgO注射位置以SCR装置进出口为主。  相似文献   

9.
The aim of this study is to determine the effect of Nb5+ doping on PZT (65/35) based bulk materials in their structure, micro structure and electrical properties. The Nb content was chosen 0-9 mole%. These materials were prepared by conventional mixed oxide method. X ray diffraction studies suggest the compound to be of rhombohedral perovskite phase. Excess addition of Nb result in pyrochlore and fluorite phase develops in PZT (65/35) sample. Detailed studies of dielectric constant as a function of temperature (40degC to 500degC) and frequency (100 Hz to 1 MHz) suggest that the compounds undergo diffuse type of phase transition. Maximum dielectric constant and resistivity were found to be strongly dependent on doping and measuring frequencies. Using complex impedance analysis micro structural parameters such as bulk and grain boundary resistance, bulk charge carrier concentration and relaxation time were determined  相似文献   

10.
We have examined the optical and photoluminescence (PL) properties of Er3+-doped GeGaS glasses of near-stoichiometric composition Ge28Ga6.2S65.3:Er0.5. We have also used powdered samples of various mean sizes (L) to examine the dependence of the 1.54 -mum PL emission spectrum and the PL decay time on the average sample size. Optical absorption spectra of Er3+ ions arising from transitions between different energy manifolds, such as 4 I15 /2 -4 I13/2,4 I15 /2 -4 I11 /2 , etc., have been used to extract Omega2, Omega4, and Omega6 values using the Judd-Ofelt analysis and a Judd-Ofelt radiative lifetime TJO = 2.6 ms for the 4 I13 / 2 -4 I15 / 2 transition. The PL emission spectra and the decay time have been found to depend on the mean sample size. The spectra are broader and the decay times are longer for larger sample sizes, due to photon trapping occurring in the sample. The extrapolated decay time to zero particle size yields a decay time that matches the Judd-Ofelt radiative lifetime almost perfectly, and confirms the argument that the true PL lifetime needs to be measured in fine powders to avoid reabsorption effects. We have estimated the maximum emission cross section as 15.5 X 10-21 cm2.  相似文献   

11.
The dielectric properties of epoxy nanocomposites with insulating nano-fillers, viz., TiO2, ZnO and AI2O3 were investigated at low filler concentrations by weight. Epoxy nanocomposite samples with a good dispersion of nanoparticles in the epoxy matrix were prepared and experiments were performed to measure the dielectric permittivity and tan delta (400 Hz-1 MHz), dc volume resistivity and ac dielectric strength. At very low nanoparticle loadings, results demonstrate some interesting dielectric behaviors for nanocomposites and some of the electrical properties are found to be unique and advantageous for use in several existing and potential electrical systems. The nanocomposite dielectric properties are analyzed in detail with respect to different experimental parameters like frequency (for permittivity/tan delta), filler size, filler concentration and filler permittivity. In addition, epoxy microcomposites for the same systems were synthesized and their dielectric properties were compared to the results already obtained for nanocomposites. The interesting dielectric characteristics for epoxy based nanodielectric systems are attributed to the large volume fraction of interfaces in the bulk of the material and the ensuing interactions between the charged nanoparticle surface and the epoxy chains.  相似文献   

12.
A novel method is described for calculating the breakdown voltage of uniform field gaps in compressed air and SF6 without the need for experiments. This method is based on the criterion of self-recurring single-electron avalanches developed in the gap. It is shown that the results computed by this method for pd values to the right of Paschen's minimum (up to 15 kPa·m in air and up to 5 kPa·M in SF6) are in good agreement with those measured experimentally. It is also shown that the use of the streamer criterion overestimates the breakdown voltage when applied for pd values where Townsend's mechanism is valid. In addition, it is shown that the size of the avalanche (and hence the parameter K) at breakdown is not constant as adopted in the literature; it depends upon the gap length and gas pressure  相似文献   

13.
The decomposition of benzene in air was carried out using a nonthermal plasma discharge reactor packed with ferroelectric materials. It was found that ferroelectric materials of 1-2 mm in diameter with a relative dielectric constant of ϵr>1100 decomposed benzene with greatest energy efficiency. Benzene at low concentrations (below 50 ppm) was completely decomposed to CO and CO2 with no formation of other hydrocarbons. The ratio of CO to CO2 produced from benzene was minimized under an atmosphere containing more than 5% O2  相似文献   

14.
In order to examine the area and the volume effects on breakdown strength in liquid nitrogen (LN2), we measured dc and ac breakdown voltages in LN2 with sphere to plane and coaxial cylindrical electrode configurations. We also carried out statistical analysis of the experimental results using the Weibull distribution and discussed with the statistical stressed electrode area (SSEA) and/or liquid volume (SSLV). The dc and ac breakdown strength in LN2 decreased to 1/5 with increasing SSEA and SSLV over the wide range from 100to 105 mm2 and from 10-1 to 105 mm3, respectively. The Weibull shape parameter m for the sphere to plane and the coaxial cylindrical electrodes was estimated to be 6 to 8 and 11 to 13, respectively; the breakdown strength in LN2 saturated with increasing SSEA and SSLV. From these results, it was verified that the area and the volume effects definitely determined the breakdown strength in LN2. The results of the Weibull statistics were compared with the conventional concept of the stressed electrode area (SEA) and liquid volume (SLV). Consequently, SSEA or SSLV was found to be nearly equal to 80 to 85% of SEA or SLV  相似文献   

15.
Pilot power plant tests of a corona discharge-electron beam hybrid combustion flow gas cleaning system have been conducted. Gas flow rate of the test loop is a heavy oil fired boiler flue gas with 1200 Nm3 /h, and one electron beam generator (500 kV×30 mA) is used with a corona discharge ammonia radical injection system (60 kV×5 mA), SO2, CO, CO2, NH3, NO, NOx and O2 gases are monitored. The results show that up to 85% of NOx and 98% of SOx in flue gases are removed under a corona discharge-electron beam hybrid operations with significant small amount of leaked ammonias from exhaust flue gases  相似文献   

16.
Nonequilibrium plasma can be used to promote chemical reactions that reduce the emission of gaseous pollutants, such as NOx, produced by coal-burning power plants or by diesel engines. Laboratory experiments were carried out to study the decrease of NOx in simulated flue gases (initial concentration of NO: 200-800 ppm, O2 : 10%, N2-balance gas) by means of a pulsed discharge plasma generated in a cylinder type reactor (outer electrode: 20-mm diameter). A rotating spark gap provided square wave high-voltages up to 25-kV, at a frequency of 250 Hz, to corona electrodes of 0.1-, 3.3-, and 6.4-mm diameter. The tests were performed at various temperatures (ambient to 220°C) and constant residence time (0.6 s). The removal performance depended on the size of the discharge electrode and was better at room temperature. The addition of C2H4 significantly enhanced the removal performance, concentration of NOx decreased from 800 ppm to 300 ppm in the discharge. The by-products of this process were analyzed using infrared spectroscopy. No traces of toxic gases could be detected  相似文献   

17.
Gadolinium (Gd)-doped lead zirconium titanate (PGZT) thin films have been prepared by Sol-Gel methods to investigate the effects of Gd doping on crystalline orientation, structural and electric properties of lead zirconium titanate (PZT) films according to doping concentration from 0% to 5%. Conventional heat process and appropriate doping concentration, without introducing a single crystal seed layer, were used for obtaining (100)-oriented PGZT thin films with dense columnar structures. The maximum dielectric constant (1310.35 at 100 Hz) and the optimum ferroelectric properties were obtained for 2% Gd-doped film. 1% Gd-doped PZT film exhibited excellent piezoelectric properties.  相似文献   

18.
为满足大容量高频变压器对大尺寸纳米晶铁芯低损耗需求,探索了50 mm高纳米晶铁芯的热处理工艺,研究了2种典型纳米晶合金Fe73.5Cu1Nb3Si15.5B7和Fe73.5Cu1Nb3Si13.5B9(简称B7和B9)的热处理温度(330~600℃)对铁芯静态和动态磁性能的影响规律。结果表明:B7和B9合金在420℃退火已开始纳米晶化,要远早于通常认为的500℃。2种合金分别在550、580℃退火具有最低的铁芯损耗;而分别在500、550℃退火具有最优的静态磁性能,即最高的磁导率和最低的矫顽力。经施加横向磁场退火后,B7合金的损耗进一步降低,$P_{\rm{cm}} $(0.5T/20k)达到7.3W/kg,为目前报道的最低铁芯损耗。根据系列数据建立了铁芯损耗分形公式为$ {\mathit{P}}_{\rm{cm}}=0.5{\mathit{f}}^{1.42}{{\mathit{B}}_{{\rm{m}}}}^{2.27} $,预测的准确性得到了实验结果的验证。  相似文献   

19.
Luminescence characteristics of Ce:Y3Al5O12 (YAG) glass-ceramic (GC) phosphor for a white LED were investigated. The GC phosphor was obtained by a heat treatment of a Ce-doped SiO2-Al2 O3-Y2O3 mother glass between 1300degC and 1500degC for the prescribed time period. The quantum efficiency (QE) of Ce3+ fluorescence in the GC materials, the color coordinate, and the luminous flux of electroluminescence of LED composite were evaluated with a blue LED (465 nm) set in an integrating sphere. The QE increased with increasing ceramming temperature of the as-made glass. The color coordinates (x, y) of the composite were increased with increasing thickness of the GC mounted on a blue LED chip. The effect of Gd2O3 substitution on the optical properties of the GC materials was also investigated. The excitation and emission wavelengths shifted to longer side up to Gd/(Y + Gd) = 0.40 in molar composition. As a result, the color coordinate of the LED with GdYAG-GC of various thickness shifted to closer to the Planckian locus for the blackbody radiation. These results were explained by partial substitution of Gd3+ ions in the precipitated YAG microcrystals, leading to the increase of lattice constant of unit cell, which was confirmed by XRD.  相似文献   

20.
为改善FeBCu系纳米晶软磁合金的热处理工艺性,抑制其退火脆性倾向,利用X射线衍射仪、透射电子显微镜、差示扫描量热仪、振动样品磁强计和平板弯曲实验等测试手段,研究了Nb含量对Fe86-xB13Cu1Nbx(x = 0~6)急冷合金条带的结构、热性能、结晶化组织、磁性能和退火脆性倾向的影响。结果表明:增加Nb量可有效提高非晶相的热稳定性、细化热处理后合金的α-Fe晶粒尺寸并改善其软磁性和退火脆性。其效果在Nb含量>2 at.%尤为显著,而当Nb含量 ≥ 5 at.%时趋于平缓。纳米晶合金退火脆性的改善主要源于其α-Fe晶粒尺寸和体积分数的降低。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号