首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
AZ31镁合金搅拌摩擦焊接头组织和冲击性能分析   总被引:1,自引:1,他引:0  
采用搅拌摩擦焊方法对厚度为6 mm的AZ31镁合金轧制板进行对接焊,研究了其焊接接头的微观组织和冲击性能.结果表明:焊接接头的焊核区组织为细小、均匀的等轴晶,热影响区晶粒局部细化;焊接接头的冲击性能高于母材;其冲击断口虽均呈韧脆混合型,但焊核、热影响区的塑性断裂特征较母材明显.  相似文献   

2.
罗华  郝传勇 《焊接学报》2008,29(2):97-100
实现了厚度为2.2 mm铸造镁合金AZ91D薄板的搅拌摩擦焊和钨极氩弧焊,分析了搅拌摩擦焊工艺参数对焊接接头成形的影响和接头组织变化,考察了搅拌摩擦焊接头的力学性能.在搅拌头旋转速度为1 380 r/min时得到了比较理想的焊接接头,而1 960 r/min的转速过大.接头不同区域所受的机械力和热量不同,显微组织明显不同.搅拌区晶粒细小,显微硬度和强度都有所提高.搅拌摩擦焊接头力学性能与热输入有关;与氩弧焊接头相比,搅拌摩擦焊接接头的性能更好.  相似文献   

3.
选用单板搅拌摩擦焊方法对AZ31镁合金进行焊接试验,利用光学显微分析、微观硬度分析、拉伸性能测试等方法,对焊接接头的微观组织和力学性能进行研究。结果表明,搅拌摩擦焊对AZ31镁合金焊接接头有明显的细化晶粒效果,且焊缝区硬度分布也随晶粒尺寸的降低而呈逐渐升高的趋势。经搅拌摩擦焊后,AZ31镁合金抗拉强度明显提高。  相似文献   

4.
20095045厚板AZ31镁合金搅拌摩擦焊焊接接头的组织与性能/杨素嫒…//焊接学报.-2009,30(5):1~4 对10mm厚板A231镁合金成功进行了搅拌摩擦焊接,获得成形良好、表面光滑、元裂纹、无气孔的焊接接头。研究该搅拌摩擦焊接头不同区域的显微组织特征,并通过拉伸、冲击和硬度试验分析了焊接接头的力学性能。结果表明,焊缝中心区是均匀细小的等轴晶粒,热力影响区晶粒大小不均匀,  相似文献   

5.
20095045厚板AZ31镁合金搅拌摩擦焊焊接接头的组织与性能/杨素嫒…//焊接学报.-2009,30(5):1~4 对10mm厚板A231镁合金成功进行了搅拌摩擦焊接,获得成形良好、表面光滑、元裂纹、无气孔的焊接接头。研究该搅拌摩擦焊接头不同区域的显微组织特征,并通过拉伸、冲击和硬度试验分析了焊接接头的力学性能。结果表明,焊缝中心区是均匀细小的等轴晶粒,热力影响区晶粒大小不均匀,  相似文献   

6.
对我国航天工业中常用的6.6 mm厚的AZ31B镁合金进行了搅拌摩擦焊试验,获得了型面良好、表面质量光滑、检测无缺陷的焊接接头。对比分析了镁合金在不同工艺参数下的焊接接头拉伸、硬度以及断裂等力学性能;同时,研究了AZ31B镁合金搅拌摩擦焊在不同区域的显微组织结构。结果表明,焊接接头抗拉强度达到250 MPa,为母材的89.3%,焊接接头硬度大于母材硬度,接头断裂位置位于前进边热力影响区附近;焊核区晶粒大小均匀,热力影响区晶粒大小不一,存在焊核区塑性流动和搅拌头的转动双重作用结构,从而论证了航天AZ31B镁合金搅拌摩擦焊的可行性。  相似文献   

7.
镁和钢搅拌摩擦焊接头组织分析   总被引:2,自引:2,他引:0       下载免费PDF全文
采用搅拌摩擦焊对镁合金(AZ31B)和钢(Q235)异种材料进行焊接,通过优化工艺参数获得最佳成形接头,并采用光学显微镜对接头显微组织进行观察,通过SEM沿板厚方向分析焊核与钢侧界面不同位置的微观形态.结果表明,镁/钢连接紧密,焊核勺子状区与镁侧分界面明显,晶粒较母材晶粒明显长大;钢侧热力影响区受机械和热的复合作用,组织不均匀,既有等轴晶组织也有条状组织,镁侧热力影响区不明显;镁热影响区晶粒粗化较钢侧严重.接头横截面钢侧显微硬度距离焊核越近硬度值越高,焊核硬度分布不均,局部区域硬度很高,最高为324.7 MPa,镁侧硬度值较均匀.  相似文献   

8.
AZ31B镁合金搅拌摩擦焊接头组织与性能   总被引:1,自引:1,他引:0  
对挤压态变形镁合金AZ31B进行搅拌摩擦焊连接。实验结果表明,可获得优质的焊接接头,接头抗拉强度可达母材的92.4%,但适当的工艺参数选择范围较窄。对焊缝的端面微观组织特征分析发现:焊核与母材组织差异极大.焊核区形成细小、均匀的再结晶组织,热力影响区呈层状分布且较宽,热影响区晶粒存在不明显的部分再结晶长大。前进侧热力影响区氧化物、杂质富集层的存在和应力集中是造成接头力学性能下降的主要原因。  相似文献   

9.
采用搅拌摩擦焊对AZ91D镁合金进行焊接试验,研究了搅拌摩擦焊接头的组织与性能.结果表明,当转速为1 000~1 400 r/min、焊速为50~150 mm/min时,均可得到表面成形良好、内部无孔洞和隧道的焊缝;焊接区与母材组织差异极大,焊接区形成细小、均匀的再结晶组织,具有锻造组织特征;热影响区为部分再结晶组织,再结晶晶粒沿原铸造晶粒的晶界生长;对接头进行拉伸试验,断裂发生在母材处,表明接头的抗拉强度高于母材.  相似文献   

10.
研究了ZK60/AZ31异种镁合金搅拌摩擦焊接头的显微组织、微区织构、显微硬度和力学性能。结果表明,ZK60合金侧和AZ31合金侧焊缝区的晶粒尺寸都相对母材更加细小,且ZK60合金侧热影响区、冠状区和搅拌区的平均晶粒尺寸都要小于AZ31合金侧相应区域;ZK60/AZ31镁合金焊接接头的屈服强度在AZ31合金母材和ZK60合金母材之间,而断后伸长率远小于两种合金母材;ZK60合金侧搅拌区边部、搅拌区中心和AZ31合金侧搅拌区边部的孪晶体积分数分别为7.7%、2.8%和32.3%;ZK60/AZ31镁合金焊接接头的断裂位于后退侧AZ31合金侧过渡区与搅拌区界面处。  相似文献   

11.
In as-welded state, each region of 2219 aluminum alloy TIG-welded joint shows diff erent microstructure and microhardness due to the diff erent welding heat cycles and the resulting evolution of second phases. After the post-weld heat treatment, both the amount and the size of the eutectic structure or θ phases decreased. Correspondingly, both the Cu content in α-Al matrix and the microhardness increased to a similar level in each region of the joint, and the tensile strength of the entire joint was greatly improved. Post-weld heat treatment played the role of solid solution strengthening and aging strengthening. After the post-weld heat treatment, the weld performance became similar to other regions, but weld reinforcements lost their reinforcing eff ect on the weld and their existence was more of an adverse eff ect. The joint without weld reinforcements after the post-weld heat treatment had the optimal tensile properties, and the specimens randomly crack in the weld zone.  相似文献   

12.
After nearly two years' tense construction, the first phase of industrialized base of Shenyang Research Institute of Foundry (SRIF), located at the Tiexi Casting and Forging Industrial Park in the west of Tiexi District, has now been completed and formally put into operation.  相似文献   

13.
Institute of Process Engineering, Chinese Academy of Sciences, China, has proposed a method for oxidative leaching of chromite with potassium hydroxide. Understanding the mechanism of chromite decomposition, especially in the potassium hydroxide fusion, is important for the optimization of the operating parameters of the oxidative leaching process. A traditional thermodynamic method is proposed and the thermal decomposition and the reaction decomposition during the oxidative leaching of chromite with KOH and oxygen is discussed, which suggests that chromite is mainly destroyed by reactions with KOH and oxygen. Meanwhile, equilibrium of the main reactions of the above process was calculated at different temperatures and oxygen partial pressures. The stable zones of productions, namely, K2CrO4 and Fe2O3, increase with the decrease of temperature, which indicates that higher temperature is not beneficial to thermodynamic reactions. In addition, a comparison of the general alkali methods is carried out, and it is concluded that the KOH leaching process is thermodynamically superior to the conventional chromate production process.  相似文献   

14.
The effect of isochronal heat treatments for 1h on variation of damping, hardness and microstructural change of the magnesium wrought alloy AZ61 was investigated. Damping and hardness behaviour could be attributed to the evolution of precipitation process. The influence of precipitation on damping behaviour was explained in the framework of the dislocation string model of Granato and Lücke.  相似文献   

15.
The Lanthanum-doped bismuth ferrite–lead titanate compositions of 0.5(Bi LaxFe1-xO3)–0.5(Pb Ti O3)(x = 0.05,0.10,0.15,0.20)(BLxF1-x-PT) were prepared by mixed oxide method.Structural characterization was performed by X-ray diffraction and shows a tetragonal structure at room temperature.The lattice parameter c/a ratio decreases with increasing of La(x = 0.05–0.20) concentration of the composites.The effect of charge carrier/ion hopping mechanism,conductivity,relaxation process and impedance parameters was studied using an impedance analyzer in a wide frequency range(102–106Hz) at different temperatures.The nature of Nyquist plot confirms the presence of bulk effects only,and non-Debye type of relaxation processes occurs in the composites.The electrical modulus exhibits an important role of the hopping mechanism in the electrical transport process of the materials.The ac conductivity and dc conductivity of the materials were studied,and the activation energy found to be 0.81,0.77,0.76 and 0.74 e V for all compositions of x = 0.05–0.20 at different temperatures(200–300 °C).  相似文献   

16.
This work was to reveal the residual stress profile in electron beam welded Ti-6Al-4V alloy plates(50 mm thick) by using finite element and contour measurement methods.A three-dimensional finite element model of 50-mmthick titanium component was proposed,in which a column–cone combined heat source model was used to simulate the temperature field and a thermo-elastic–plastic model to analyze residual stress in a weld joint based on ABAQUS software.Considering the uncertainty of welding simulation,the computation was calibrated by experimental data of contour measurement method.Both test and simulated results show that residual stresses on the surface and inside the weld zone are significantly different and present a narrow and large gradient feature in the weld joint.The peak tensile stress exceeds the yield strength of base materials inside weld,which are distinctly different from residual stress of the thin Ti-6Al-4V alloy plates presented in references before.  相似文献   

17.
Silicon carbide nanoparticle-reinforced nickel-based composites(Ni–Si CNP),with a Si CNPcontent ranged from1 to 3.5 wt%,were prepared using mechanical alloying and spark plasma sintering.In addition,unreinforced pure nickel samples were also prepared for comparative purposes.To characterize the microstructural properties of both the unreinforced pure nickel and the Ni–Si CNPcomposites transmission electron microscopy(TEM) was used,while their mechanical behavior was investigated using the Vickers pyramid method for hardness measurements and a universal tensile testing machine for tensile tests.TEM results showed an array of dislocation lines decorated in the sintered pure nickel sample,whereas,for the Ni–Si CNPcomposites,the presence of nano-dispersed Si CNPand twinning crystals was observed.These homogeneously distributed Si CNPwere found located either within the matrix,between twins or on grain boundaries.For the Ni–Si CNPcomposites,coerced coarsening of the Si CNPassembly occurred with increasing Si CNPcontent.Furthermore,the grain sizes of the Ni–Si CNPcomposites were much finer than that of the unreinforced pure nickel,which was considered to be due to the composite ball milling process.In all cases,the Ni–Si CNPcomposites showed higher strengths and hardness values than the unreinforced pure nickel,likely due to a combination of dispersion strengthening(Orowan effects) and particle strengthening(Hall–Petch effects).For the Ni–Si CNPcomposites,the strength increased initially and then decreased as a function of Si CNPcontent,whereas their elongation percentages decreased linearly.Compared to all materials tested,the Ni–Si CNPcomposite containing 1.5% Si C was found more superior considering both their strength and plastic properties.  相似文献   

18.
A new method was introduced to achieve directional growth of Sn crystals. Microstructures in liquid(Pb)/liquid(Sn) diffusion couples were investigated under various static magnetic fields. Results show that the β-Sn crystals mainly reveal an irregular dendritic morphology without or with a relatively low static magnetic field(B0.3 T). When the magnetic field is increased to 0.5 T, the β-Sn dendrites close to the final stage of growth begin to show some directional character. With a further increase in the magnetic field to a higher level(0.8–5 T), the β-Sn dendrites have an enhanced directional growth character, but the dendrites show a certain deflection. As the magnetic field is increased to 12 T, the directional growth of the β-Sn dendrites in the center of the couple is severely destroyed. The mechanism of the directional growth of the β-Sn crystals and the deflection of the β-Sn crystals with the application of static magnetic field was tentatively discussed.  相似文献   

19.
On the basis of the single-particle framework, a new theory on inclusion growth in metallurgical melts is developed to study the kinetics of inclusion growth on account of reaction and collision. The studies show that the early growth of inclusion depends on reaction growth and Brawnian motion collision, and where the former is decisive, the late growth depends on turbulence collision and Stokes' collision, and where the former is dominant; collision growth is very quick during the smelting process, lessened in the refining process, but nearly negligible in the continuous casting process.  相似文献   

20.
The motion of melt droplets in spray degassing process was analyzed theoretically. The height of the treatment tank in spray degassing process could be determined by the results of theoretical calculation of motion of melt droplets. To know whether the melt droplets would solidify during spraying process, the balance temperature of melt droplets was also theoretically analyzed. Then proof experiments for theoretical results about temperature of melt droplets were carried. In comparison, the experimental results were nearly similar to the calculation results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号