首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BACKGROUND: Mixed hematopoietic chimerism induced with a nonmyeloablative conditioning regimen leads to donor-specific transplantation tolerance. Analyses of specific Vbeta-bearing T-cell families that recognize endogenous superantigens demonstrated that donor-specific tolerance is due mainly to an intrathymic deletional mechanism in these mixed chimeras. However, superantigens are not known to behave as classical transplantation antigens. We therefore used T-cell receptor (TCR) transgenic (Tg) recipients expressing a clonotypic TCR specific for an allogeneic major histocompatibility complex antigen to further assess deletional tolerance. METHODS: 2C TCR Tg mice (H2b), whose Tg TCR recognizes major histocompatibility complex class I Ld, were used as recipients of Ld+ bone marrow cells after conditioning with depleting anti-CD4 and CD8 monoclonal antibodies, 3 Gy whole-body irradiation, and 7 Gy thymic irradiation. Chimerism and deletion of CD8+ 2C recipient T cells was evaluated by flow cytometry and by immunohistochemical staining. Tolerance was tested with in vitro cell-mediated lympholysis assays and in vivo by grafting with donor skin. RESULTS: Intrathymic and peripheral deletion of 2C+ CD8-single-positive T cells was evident in mixed chimeras, and deletion correlated with the presence of donor-type cells with dendritic morphology in the thymus, and with chimerism in lymphohematopoietic tissues. Chimeras showed tolerance to the donor in cell-mediated lympholysis assays and specifically accepted donor skin grafts. CONCLUSIONS: Tolerance to transplantation antigens is achieved through intrathymic deletion of donor-reactive T cells in mixed chimeras prepared with a nonmyeloablative conditioning regimen and allogeneic bone marrow transplantation.  相似文献   

2.
Intrathymic (IT) antigen injection has been shown to induce antigen-specific systemic tolerance in the rodent. To delineate the mechanisms responsible for the induction of tolerance, we used the 2C line of T cell receptor transgenic mice. The majority of T cells in 2C mice express an antigen receptor specific for the major histocompatibility complex class I alloantigen Ld and can be identified with the clonotypic monoclonal antibody 1B2. IT injection of lymphoid cells expressing Ld was found to induce a significant prolongation in BALB/c skin allograft survival. The allograft prolongation was associated with a marked reduction in the number of developing 1B2+ thymocytes (clonal deletion), which occurred primarily at the CD4+ CD8+ stage of thymocyte development, as well as a reduction in the number of mature CD8+ 1B2+ 2C T cells in peripheral lymphoid tissue. In addition, CD8+ 1B2+ 2C T cells that survive deletion have decreased CD8 expression levels and a significantly reduced in vitro proliferative response to specific alloantigen (clonal anergy). Exogenous recombinant interleukin 2 restores the capacity of 2C T cells to respond in vitro to alloantigen. Experiments involving separation of cells by fluorescence-activated cell sorter indicate that there is a precise correlation between the reduction in CD8 expression and anergy induction. Collectively, these data indicate that IT antigen injection can induce antigen-specific systemic tolerance by both clonal deletion and clonal anergy.  相似文献   

3.
Intrathymic (i.t.) injection of donor alloantigens has proved to be an effective strategy for the induction of tolerance. However, the mechanisms by which tolerance is induced and maintained after transplantation remain unclear. In this report we show that tolerance to donor cardiac allografts can be induced across a MHC class I difference by i.t. injection of donor splenocytes and transient T cell depletion. Furthermore, using H-2K(b)-specific TCR transgenic mice (BM3), we demonstrate that prolonged deletion of donor-reactive thymocytes was essential to induce tolerance by i.t. injection and this was dependent upon donor cells persisting in the thymus. Examination of the kinetics of thymic export following i.t. injection revealed that prolonged deletion of thymocytes was required to delay export of new T cells to the periphery until the time of transplantation. Importantly, after transplantation donor cell persistence in the thymus and i.t. deletion were no longer necessary to maintain tolerance. The graft itself or cells from the graft was responsible for maintaining tolerance at this stage. These findings reveal that multiple mechanisms are responsible for the induction and maintenance phases of tolerance to alloantigens in vivo after i.t. delivery, and that a complex inter-relationship between donor cell persistence in the thymus, i.t. deletion, thymic export of T cells and the timing of transplantation is involved.  相似文献   

4.
BACKGROUND: In the rat, orthotopic liver transplantation from a DA strain donor to a PVG recipient causes an early rejection response that spontaneously resolves over the following weeks to yield long-lasting, donor-specific tolerance. METHODS: Limiting dilution analysis was used to estimate the frequencies of host CD4+ cells able to proliferate in response to donor antigens in the grafted liver and spleen of recipients during and after tolerance induction. RESULTS: Compared with naive PVG rats, both the frequencies and absolute numbers of donor-reactive host CD4+ cells in the liver and spleen rose significantly during the first week after transplantation and remained elevated for at least 3 months. CONCLUSION: We conclude that the development of tolerance in this model is not associated with deletion of clonogenic donor-reactive CD4+ T cells by clonal exhaustion or any other mechanism.  相似文献   

5.
We have used T-cell receptor (TCR) transgenic mice to analyze the interaction of tumors with the immune system. We show that the tumor cell line Lewis lung-lymphocytic choriomeningitis virus (LL-LCMV), genetically manipulated to express an H-2 Db-restricted epitope of the lymphocytic choriomeningitis virus glycoprotein (LCMV33-41), can grow progressively in TCR transgenic mice, where approximately 50% of CD8+ T cells are specific for LCMV33-41. TCR transgenic T cells were not deleted in tumor-bearing mice, and their surface phenotype and cytokine secretion patterns remained typical of naive T cells. Also, TCR transgenic T cells from tumor-bearing mice had undiminished capacity to proliferate to antigen in vitro. Tumor-protective immune responses could be elicited in TCR transgenic mice by immunization with LCMV33-41 peptide-loaded dendritic cells. Tumor resistance correlated with the switch of TCR transgenic T cells from a CD44low to a CD44high phenotype and increased capacity to produce IFNgamma in vitro. Results similar to those obtained in TCR transgenic mice were also obtained using an adoptive transfer system, where small numbers of TCR transgenic T cells were injected into normal C57BL/6 hosts. These data indicate that even large tumors may not induce specific immunization, tolerance, or anergy to tumor antigens, and that high numbers of tumor-specific CTL precursors are not sufficient to provide tumor resistance.  相似文献   

6.
T cell repertoire selection processes involve intracellular signaling events generated through the TCR. The CD4 and CD8 coreceptor molecules can act as positive regulators of TCR signal transduction during these developmental processes. In this report, we have used TCR transgenic mice to determine whether TCR signaling can be modulated by the CD8 coreceptor molecule. These mice express on the majority of their T cells a TCR specific for the male (H-Y) Ag presented by the H-2Db MHC class I molecule. We show that CD4-CD8-, but not CD4-CD8+, thymocytes expressing the H-Y TCR responded with high intracellular calcium fluxes to TCR/CD3 stimulation without extensive receptor cross-linking. To examine the effects of CD8 expression on intracellular signaling responses in the CD4-CD8- cells, the H-Y TCR transgenic mice were mated with transgenic mice that constitutively expressed the CD8 alpha molecule on all T cells. The expression of the CD8 alpha alpha homodimer in the CD4-CD8-thymocytes led to impaired intracellular calcium responses and less efficient protein tyrosine phosphorylation of substrates after TCR engagement. In male H-2b H-Y transgenic mice, the majority of thymocytes have been deleted with the surviving cells expressing a high density of the transgenic TCR and exhibiting either a CD4-CD8- or CD4-CD8lo phenotype. It has been postulated that these cells escaped deletion by down-regulating the CD8 molecule. In the H-Y TCR/CD8 alpha double transgenic male mice, the CD4-CD8lo cells were completely eliminated as a result of CD8 alpha expression. However, the CD4-CD8- T cells were not deleted despite normal levels of the CD8 alpha transgene expression. These results suggest that the CD4-CD8- thymocytes may not be susceptible to the same deletional mechanisms as other thymocytes expressing TCR-alpha beta.  相似文献   

7.
Tumors could escape an immune attack by inducing peripheral T cell tolerance. To test this, T cell receptor (TCR)-transgenic mice were injected with plasmacytoma cells secreting a highly tumor-specific antigen, a monoclonal immunoglobulin (Ig), for which the transgene-encoded TCR is specific. The TCR recognizes a third hypervariable region idiotypic (Id) peptide of the Ig, presented by a class II molecule on host antigen-presenting cells. The TCR-transgenic mice have previously been shown to be protected against an Id+ plasmacytoma challenge. In the present experiments, the protection was deliberately overwhelmed by subcutaneous injection of large numbers of plasmacytoma cells. Such tumor mice, chronically exposed to increasing amounts of monoclonal Ig, delete Id-specific CD4+ T cells in their peripheral lymphoid organs and in the tumor. The residual CD4+ cells express endogenous, rather than transgene-encoded TCR alpha chains. Peripheral deletion, functional T cells unresponsiveness, and thymocyte deletion are all first detected at the same serum concentration of monoclonal Ig, approximately 50 micrograms/ml (0.3 microM), and become more and more profound as the tumor burden increases. The results suggest that peripheral T cell tolerance to Id could be a tumor escape mechanism in patients with B cell malignancies. In addition, the findings have implications for T cell tolerance to Ig V regions in normal individuals.  相似文献   

8.
Under most circumstances, allelic exclusion at the T cell receptor (TCR)beta locus is tightly regulated. Here, we describe a system in which TCRbeta allelic exclusion is overcome as a result of V(D)J recombination in peripheral CD4+ T cells. In TCRbeta chain transgenic mice, tolerogen-mediated chronic peripheral selection against cells expressing the transgene leads to surface expression of endogenous TCRbeta chains. Peripheral CD4+ T cells reexpress the recombination activating genes, RAG1 and RAG2, and contain signal end intermediates indicative of ongoing V(D)J recombination. The rescue from deletion of mature T cells expressing newly generated TCRbeta chains suggests that receptor revision plays a role in the maintenance of peripheral T cell tolerance.  相似文献   

9.
T cell tolerance to parenchymal self-antigens is thought to be induced by encounter of the T cell with its cognate peptide-major histocompatibility complex (MHC) ligand expressed on the parenchymal cell, which lacks appropriate costimulatory function. We have used a model system in which naive T cell receptor (TCR) transgenic hemagglutinin (HA)-specific CD4+ T cells are adoptively transferred into mice expressing HA as a self-antigen on parenchymal cells. After transfer, HA-specific T cells develop a phenotype indicative of TCR engagement and are rendered functionally tolerant. However, T cell tolerance is not induced by peptide-MHC complexes expressed on parenchymal cells. Rather, tolerance induction requires that HA is presented by bone marrow (BM)-derived cells. These results indicate that tolerance induction to parenchymal self-antigens requires transfer to a BM-derived antigen-presenting cell that presents it to T cells in a tolerogenic fashion.  相似文献   

10.
Recent experiments have suggested that tumor necrosis factor alpha (TNFalpha) can down-regulate islet-specific T cells and prevent the development of autoimmune diabetes. Here we demonstrate that transgenic mice expressing both TNFalpha and the Leishmania major LACK antigen in the pancreas (RIP-TNFalpha/RIP-LACK) exhibit an impaired ability to mount a CD4+ T cell response against LACK. In addition, peripheral CD4+ T cells from TCR transgenic mice (TCR-LACK/RIP-TNFalpha/RIP-LACK) produced reduced interleukin-2 but elevated levels of T helper 2 cytokines in response to LACK peptide in vitro. Taken together, our data suggest that TNFalpha may act in vivo to modulate a potentially damaging self-reactive T cell response by inducing tolerance to pancreatic antigens.  相似文献   

11.
To investigate the consequences of CD40 engagement on the neonatal induction of transplantation tolerance, BALB/c mice were injected at birth with (A/J x BALB/c) F1 spleen cells together with activating anti-CD40 mAb and grafted 4 wk later with A/J skin. Whereas A/J allografts were accepted in mice neonatally injected with F1 cells and control Ab, they were acutely rejected in mice injected with F1 cells and anti-CD40 mAb. Neonatal administration of anti-CD40 mAb resulted in enhanced anti-A/J CTL activity, increased IFN-gamma, and decreased IL-4 production by donor-specific T cells in vitro. Experiments using anti-cytokine mAb and IFN-gamma-deficient mice demonstrated that CD40 ligation prevents neonatal allotolerance through an IFN-gamma- and IL-12-dependent pathway. Finally, we found that newborn T cells express less CD40L than adult T cells upon TCR engagement. Taken together these data indicate that insufficiency of CD40/CD40L interactions contribute to neonatal transplantation tolerance.  相似文献   

12.
T cell receptor (TCR)-recognizing regulatory cells, induced after vaccination with self-reactive T cells or TCR peptides, have been shown to prevent autoimmunity. We have asked whether this regulation is involved in the maintenance of peripheral tolerance to myelin basic protein (MBP) in an autoimmune disease model, experimental autoimmune encephalomyelitis (EAE). Antigen-induced EAE in (SJL x B10.PL)F1 mice is transient in that most animals recover permanently from the disease. Most of the initial encephalitogenic T cells recognize MBP Ac1-9 and predominantly use the TCR V beta 8.2 gene segment. In mice recovering from MBP-induced EAE, regulatory CD4+ T cells (Treg) specific for a single immunodominant TCR peptide B5 (76-101) from framework region 3 of the V beta 8.2 chain, become primed. We have earlier shown that cloned B5-reactive Treg can specifically downregulate responses to Ac1-9 and also protect mice from EAE. These CD4 Treg clones predominantly use the TCR V beta 14 or V beta 3 gene segments. Here we have directly tested whether deletion/blocking of the Treg from the peripheral repertoire affects the spontaneous recovery from EAE. Treatment of F1 mice with appropriate V beta-specific monoclonal antibodies resulted in an increase in the severity and duration of the disease; even relapses were seen in one-third to one-half of the Treg-deleted mice. Interestingly, chronic disease in treated mice appears to be due to the presence of Ac1-9-specific T cells. Thus, once self-tolerance to MBP is broken by immunization with the antigen in strong adjuvant, TCR peptide-specific CD4 Treg cells participate in reestablishing peripheral tolerance. Thus, a failure to generate Treg may be implicated in chronic autoimmune conditions.  相似文献   

13.
Animal models of autoimmune diseases have been instrumental in advancing our understanding of autoimmunity in humans. Collagen-induced arthritis in mice is an autoimmune disease model of rheumatoid arthritis, which is MHC class II restricted and CD4 T cell dependent. To better understand the fundamental role of T cells in arthritis, we have generated a transgenic mouse carrying the rearranged Valpha11.1 and Vbeta8.2 TCR chain genes isolated from a type II collagen (CII)-specific T cell hybridoma. Cell surface analysis indicated that Vbeta8.2 chain was expressed on the surface of nearly all peripheral T cells. Analysis of T cell subsets in transgenic mice revealed a profound skewing in peripheral T cells towards the CD4 population. Although peripheral T cells were not tolerant to CII and responded to CII stimulation in vitro, transgenic mice did not develop spontaneous arthritis. However, a rapid onset of arthritis with severe clinical signs was detected in transgenic mice after immunization with CII in complete Freund's adjuvant. Histological analysis of inflamed joints showed a great resemblance to arthritic joints in man. This unique transgenic mouse model provides valuable insights into the mechanism of arthritis and into potential specific immune interventions.  相似文献   

14.
To examine the effect of self Ag on activation requirements of TCR-alphabeta intestinal intraepithelial lymphocytes (IELs), we utilized the 2C transgenic (Tg) mouse model specific for a peptide self Ag presented by class I MHC, H-2Ld. CD8alpha alpha and CD4-CD8- IELs from syngeneic (H-2b, self Ag-) and self Ag-bearing (H-2b/d, self Ag+) strains were examined for their ability to respond in vitro to P815 (H-2d) cell lines expressing the endogenous antigenic peptide, p2Ca. Proliferation, cytokine production, and CTL activity were elicited in IEL T cells isolated from self Ag- H-2b mice when stimulated with P815 cells expressing basal levels of self Ag. These responses were enhanced following the addition of exogenous p2Ca peptide and ectopic expression of the costimulatory molecule, B7-1. By comparison, IEL from self Ag-bearing mice failed to respond to basal levels of self Ag presented by P815 cells even in the presence of B7-1-mediated costimulation. However, the addition of increasing amounts of exogenous p2Ca peptide induced a response from the in vivo "tolerized" T cells. These results suggest that exposure to self Ag in vivo increased the threshold of TCR activation of Ag-exposed self-reactive IELs. The dependence of increased signal 1 to activate self-reactive IELs suggests a defect in TCR signaling that may maintain self tolerance in vivo. These data suggest that conditions that overcome signal 1 IEL defects may initiate autoreactive responses in the intestine.  相似文献   

15.
Lupus-prone mice develop a systemic autoimmune disease that is dependent upon the B cell help provided by autoreactive alphabeta CD4+ T cells. Since autoreactive T cells with high affinity for self peptides are normally deleted in the thymus, their presence in these mice suggests the possibility that intrathymic negative selection may be defective. Here, we directly compared central T cell tolerance in response to a conventional peptide Ag in lupus-prone MRL/MpJ mice with a nonautoimmune strain using an MHC class II-restricted TCR transgene. Our results did not demonstrate any defects after Ag exposure in the induction of intrathymic deletion of immature CD4+ CD8+ thymocytes, in TCR down-regulation, or in the number of apoptotic thymocytes in MRL/MpJ compared with nonautoimmune mice. Furthermore, we found that the lpr mutation had no influence upon the Ag-induced thymic deletion of immature thymocytes. These data support the notion that T cell autoreactivity in MRL/MpJ mice is caused by defects in peripheral control mechanisms.  相似文献   

16.
A murine CTLA4/Fc gamma2a heavy chain (mCTLA4-Fc) chimeric fusion molecule was used in B6AF1 recipients of BALB/c pancreatic islet allografts to study the induction and maintenance of tolerance following inhibition of the CD28-B7 pathway for T cell activation. Donor-specific tolerance was achieved by administering 100 microg of mCTLA4-Fc on alternate days for 14 days (8 total doses) or a single 500 microg dose of mCTLA4-Fc on day 2 after transplant. Tolerance was mediated by long-lived peripheral lymphocytes and showed features of organ and alloantigen specificity. Whereas tolerance could not be established in allograft recipients receiving simultaneous mCTLA4-Fc and rIL-2, previously tolerant animals did not reject their grafts when given IL-2, suggesting that the induction and maintenance phases of tolerance were distinct and separate. The maintenance of donor-specific tolerance was an active immunologic process that was CD4+ T cell dependent and could be adoptively transferred to naive lymphocytes, but could not be explained by apoptosis or deletion of alloreactive T cells. Although an IL-2-sensitive mechanism such as anergy may contribute toward the induction of tolerance, its maintenance involves active suppression.  相似文献   

17.
Prior studies in CD4-deficient mice established the capacity of T helper (Th) lineage cells to mature into Th1 cells. Unexpectedly, challenge of these mice with Nippostrongylus brasiliensis, a Th2-inducing stimulus, failed to result in the development of Th2 cells. Additional studies were performed using CD4+ or CD4-CD8- (double-negative) T cell receptor (TCR) transgenic T cells reactive to LACK antigen of Leishmania major. Double-negative T cells were unable to develop into Th2 cells in vivo, and, unlike CD4+ T cells, could not be primed for interleukin-4 production in vitro. Similarly, CD4+ TCR transgenic T cells primed on antigen-presenting cells expressing mutant MHC class II molecules unable to bind CD4 did not differentiate into Th2 cells. These data suggest that interactions between the TCR, MHC II-peptide complex and CD4 may be involved in Th2 development.  相似文献   

18.
Previous experiments showed that peptides corresponding to a major CD4-binding site on the beta2 domain of MHC class II molecules, IAbeta134-148, enhance responses by CD4+ T lymphocytes to antigen, allo-antigen and bacterial superantigen in vitro, and to soluble protein in vivo. To determine whether peptide IAbeta134-148 acted by inhibiting antigen-induced T cell tolerance, ovalbumin-specific CD4+ lymph node (LN) T cells from TCR transgenic DO.11.10 mice were adoptively transferred into H-2 syngeneic BALB/c recipients. Tolerance was then induced by injecting antigen i.v. When peptide IAbeta134-148 was used to interfere with CD4-MHC class II interactions, accumulation of clonotype-positive T lymphocytes in the LN and induction of T cell tolerance in vivo were delayed. The mechanism by which peptide IAbeta134-148 inhibited T cell tolerance included the peptide's ability to block activation-induced cell death. Further, antigen-specific splenic T lymphocytes were not tolerized in IAbeta134-148-treated mice, providing a reservoir of T cells that could respond to a secondary immunization. The results reported here suggest that participation of the T cell co-receptor, CD4, in TCR signaling differentially affected both T cell migration and the induction of antigen-specific tolerance. Therefore, in this in vivo model system, the combined strength of all signals received (e.g. via TCR, co-receptors and co-stimulators) determined whether T cell immunity or apoptosis and tolerance resulted from antigenic stimulation. These findings are potentially important for the development of reagents to enhance vaccine efficacy and tumor immunity.  相似文献   

19.
20.
T cell tolerance to superantigen can be mediated by clonal anergy in which Ag-specific mature T cells are physically present but are not able to mount an immune response. We induced T cell unresponsiveness to minor lymphocyte stimulations locus antigen (Mls)-1a in mice transgenic for TCR V beta 8.1 in three different systems: 1) injection of Mls-1a spleen cells, 2) mating with Mls-1a mice, and 3) bone marrow (BM) chimeras in which Mls-1a is present only on nonhematopoietic cells. CD4+8-V beta 8.1+ cells from all these groups did not proliferate in response to irradiated spleen cells from Mls-1a mice. We compared the response of these cells by T cell/stimulator cell conjugate formation, Ca2+ mobilization, and proliferation assays. The mechanisms underlying the unresponsiveness of these T cells appear to differ. CD4+8-V beta 8.1+ cells from Mls-1a spleen cell-injected mice mobilized cytoplasmic Ca2+ but proliferated at a reduced level in response to cross-linking with anti-TCR mAb. However, these cells formed conjugates, mobilized Ca2+, and proliferated in response to Mls-1a when activated B cells were used as stimulators, although they produced reduced levels of IL-2. In Mls-1a/b V beta 8.1 transgenic mice, a subset in CD4+8-V beta 8.1+ cells did not mobilize cytoplasmic Ca2+ after TCR cross-linking. Their conjugate formation, Ca2+ mobilization, or proliferation in response to Mls-1a on activated B cells was undetectable. Finally, CD4+8-V beta 8.1+ cells from the BM chimeras proliferated to TCR cross-linking at a partially reduced level and formed conjugates, mobilized Ca2+, and proliferated in response to Mls-1a on activated B cells. These features suggest that the mechanisms underlying the maintenance of anergy in Mls-1a spleen cell-injected mice are distinct from those in Mls-1a mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号