首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
The effect of systemic or intracerebroventricular (ICV) infusion of the angiotensin AT1 receptor antagonist losartan on blood pressure during hypotensive haemorrhage was investigated in five conscious sheep. Mean arterial pressure (MAP) was measured during haemorrhage (15 mL kg-1 body wt). Losartan (1 or 0.33 mg h-1) was given to sheep by ICV, intravenous or intracarotid administration, beginning 60 min before and continuing during the haemorrhage. During control infusion of ICV artificial cerebrospinal fluid, MAP was maintained until 13.16 +/- 0.84 mL kg-1 blood loss, when a rapid reduction of at least 15 mmHg in arterial pressure occurred (the decompensation phase). ICV infusion of losartan at 1 mg h-1 caused an early onset of the decompensation phase after only 9.8 +/- 0.8 mL kg-1 of blood loss compared with control. Intravenous infusion of losartan (1 mg h-1) also caused an early onset (P < 0.05) of the decompensation phase at 10.2 +/- 1.0 mL kg-1 blood loss. This dose of losartan inhibited the pressor response to ICV angiotensin II, but not to intravenously administered angiotensin II, indicating that only central AT1 receptors were blocked. Bilateral carotid arterial administration of losartan at 0.33 mg h-1 caused an early onset of the decompensation phase during haemorrhage at 11.06 +/- 0.91 mL kg-1 blood loss (P < 0.05), which did not occur when infused by intravenous or ICV routes. The results indicate that an angiotensin AT1-receptor-mediated mechanism is involved in the maintenance of MAP during haemorrhage in sheep. The locus of this mechanism appears to be the brain.  相似文献   

2.
We determined the effects of two classical angiotensin II (ANG II) antagonists, [Sar1, Ala8]-ANG II and [Sar1, Thr8]-ANG II, and losartan (a nonpeptide and selective antagonist for the AT1 angiotensin receptors) on diuresis, natriuresis, kaliuresis and arterial blood pressure induced by ANG II administration into the median preoptic nucleus (MnPO) of male Holtzman rats weighing 250-300 g. Urine was collected in rats submitted to a water load (5% body weight) 1 h later. The volume of the drug solutions injected was 0.5 microliters over 10-15 s. Pre-treatment with [Sar1, Ala8]-ANG II (12 rats) and [Sar1, Thr8]-ANG II (9 rats), at the dose of 60 ng reduced (13.7 +/- 1.0 vs 11.0 +/0 1.0 and 10.7 +/0 1.2, respectively), whereas losartan (14 rats) at the dose of 160 ng totally blocked (13.7 +/- 1.0 vs 7.6 +/- 1.5) the urine excretion induced by injection o 12 ng of ANG II (14 rats). [Sar1, Ala8]-ANG II impaired Na+ excretion (193 +/- 16 vs 120 +/- 19), whereas [Sar1, Thr8]-ANG II and losartan block Na+ excretion (193 +/- 16 vs 77 +/- 15 and 100 +/- 12, respectively) induced by ANG II. Similar effects induced by ANG II on K+ excretion were observed with [Sar1, Ala8]-ANG II, [Sar1, Thr8]- ANG II, and losartan pretreatment (133 +/- 18 vs 108 +/- 11, 80 +/- 12, and 82 +/- 15, respectively). The same doses as above of [Sar1, Ala8]-ANG II (8 rats), [Sar1, Thr8]-ANG II (8 rats), and losartan (9 rats) blocked the increase in the arterial blood pressure induced by 12 ng of ANG II (12 rats) (32 +/- 4 vs 4 +/- 2, 3.5 +/- 1, and 2 +/- 1, respectively. The results indicate that the AT1 receptor subtype participates in the increases of diuresis, natriuresis, kaliuresis and arterial blood pressure induced by the administration of ANG II into the MnPO.  相似文献   

3.
4.
The chronotropic effect of angiotensin II (Ang II) was studied in cultured neurons from rat hypothalamus and brain stem with the use of the patch-clamp technique. Ang II (100 nM) increased the neuronal spontaneous firing rate from 0.8 +/- 0.3 (SE) Hz in control to 1.3 +/- 0.4 Hz (n = 7, P < 0.05). The amplitude of threshold stimulation was decreased by Ang II (100 nM) from 82 +/- 4 pA to 62 +/- 5 pA (n = 4, P < 0.05). These actions of Ang II were reversed by the angiotensin type 1 (AT1) receptor antagonist losartan (1 microM). In the presence of tetrodotoxin, Ang II (100 nM) significantly increased the frequency and the amplitude of the Cd2+-sensitive subthreshold activity of the cultured neurons. Ang II also stimulated the subthreshold early afterdepolarizations (EADs) to become fully developed action potentials. Similar to the action of Ang II, the protein kinase C (PKC) activator phorbol 12-myristate 13-acetate (PMA, 100 nM) increased the firing rate from 0.76 +/- 0.3 Hz to 2.3 +/- 0.5 Hz (n = 6, P < 0.05) and increased the neuronal subthreshold activity. After neurons were intracellularly dialyzed with PKC inhibitory peptide (PKCIP, 5 microM), PMA alone, Ang II alone, or PMA plus Ang II no longer increased the action potential firing initiated from the resting membrane potential level. However, superfusion of PMA plus Ang II or Ang II alone increased the number of EADs that reached threshold and produced action potentials even in the presence of PKCIP (5 microM, n = 4). The actions of Ang II could also be mimicked by depolarizing pulse and K+ channel blockers (tetraethylammonium chloride or 4-aminopyridine). These results indicate that Ang II by activation of AT1 receptors increases neuronal excitability and firing frequency, and that this may involve both PKC dependent and -independent mechanisms.  相似文献   

5.
Apoptosis in the male gonad   总被引:1,自引:0,他引:1  
1. Previous work has shown that enalaprilat, an inhibitor of angiotensin-converting enzyme (ACE), potentiated the actions of alpha 1-adrenoceptor antagonists; it was hypothesized that angiotensin II (AngII) modulated the activity of alpha 1-adrenoceptors. This hypothesis was tested in Sprague-Dawley rat isolated perfused tail arteries using the AT1 receptor antagonist losartan and the AT2 receptor antagonist PD123319. 2. Losartan had no alpha 1-adrenoceptor antagonist effects at concentrations below 1 mumol/L. Similarly, losartan (0.1 mumol/L) had no effect on the alpha 1-adrenoceptor antagonist action of doxazosin (1, 10 nmol/L) nor on the potentiation of doxazosin by enalaprilat (1 mumol/L). 3. PD123319 (0.1 mumol/L) had no alpha 1-adrenoceptor antagonist effect but altered the mode of action of the alpha 1-adrenoceptor antagonist doxazosin: PD123319 changed doxazosin from a competitive to a non-competitive antagonist, as evidenced by the reduced slope of the dose-response curve for the alpha 1-adrenoceptor agonist phenylephrine. 4. These results suggest that AngII can modulate alpha 1-adrenoceptor function in rat tail arteries via an indirect action at AT2 receptors. However, the present results do not rule out the involvement of bradykinin, endothelin or prostaglandin in the modulation of alpha 1-adrenoceptor function by angiotensin II.  相似文献   

6.
BACKGROUND: Recombinant human growth hormone (rhGH) has shown beneficial effects on cardiac function after myocardial infarction (MI) in rats. High-dose angiotensin II (AT1) receptor blockade in normal rats inhibited the hypertrophic effect of growth hormone (GH), therefore we investigated whether GH effects after MI would be enhanced by giving it in sequence after remodeling had been inhibited by prior AT1 blockade (losartan, L). METHODS AND RESULTS: Rats given losartan for 10 weeks after MI followed by rhGH for 2 weeks (2 mg/kg twice a day, GH plus losartan) were compared with rats given losartan for 10 weeks followed by placebo for 2 weeks (placebo plus losartan group) and with untreated controls (n = 17-20/group). Average MI sizes and left ventricular (LV) end diastolic (ED) dimensions (echocardiography) did not differ between groups. In GH and losartan, body weight (BW) was increased but left ventricular weight (LVW)/BW was reduced, and the LV fractional shortening and LV dP/dtmax (catheter tip micromanometer) were increased compared with the control group (20.3 vs 15.4% and 5579 vs 4699 mmHg/s, respectively, P < .05). The cardiac index also was significantly increased. In the placebo plus losartan group, the LVW/BW was also reduced and the cardiac index increased versus controls. Stroke volume was increased in GH plus losartan group compared with both placebo plus losartan and controls, and the systemic vascular resistance was significantly decreased only in the GH plus losartan group. The ED posterior wall thickness (noninfarcted wall) was increased in GH plus losartan compared with both control and placebo plus losartan. Left ventricular end diastolic pressure reduction was not significant in GH plus losartan group versus controls but was reduced in placebo plus losartan group, whereas LV relaxation (tau) was improved in both groups versus control rats. Thus, persistent remodeling effects caused by prior AT1 blockade undoubtedly contributed to some responses, but short-term GH given in sequence after chronic AT1 blockade had favorable actions on the failing heart and peripheral circulation by increasing LV wall thickness with partial reversal of unfavorable remodeling, lowering of vascular resistance, improvement of LV contractility, and enhanced LV systolic function and cardiac index relatively late after experimental MI.  相似文献   

7.
8.
9.
This study was conducted to determine the effect of stevioside (SVS) on glucose metabolism. The experiments were performed in male Wistar rats treated with SVS either by intravenous infusion or feeding. SVS infusion (150 mg/mL) was carried out in doses of 0.67, 1.00, and 1.33 mL.kg-1 body weight.h-1. The plasma glucose level significantly increased both during and after SVS infusion, whereas it was not affected by SVS feeding (13.3 mL.kg-1 body weight). The glucose turnover rate (GTR) of [14C(U)]glucose and [3(-3)H]glucose was not significantly different between control and SVS infusion animals. Percent glucose carbon recycling and glucose clearance were reduced from 28.7 +/- 1.3 to 23.0 +/- 1.6% (p < 0.05) and from 6.46 +/- 0.34 to 4.99 +/- 0.20 mL.min-1.kg-1 body weight (p < 0.01), respectively. The plasma insulin level did not change, whereas the plasma glucose level significantly increased from 120.3 +/- 5.9 to 176.8 +/- 10.8 mg% (p < 0.01) during SVS infusion. Animals pretreated with angiotensin II and arginine vasopressin showed no significant effect, while animals pretreated with prazosin had an attenuated hyperglycemic effect of SVS infusion. Pretreatment with indomethacin or N omega-nitro-L-arginine methyl ester (L-NAME) alleviated the plasma glucose level during the second period of SVS infusion. Pretreatment with the combination infusion of indomethacin and L-NAME reduced the plasma glucose level from 117.0 +/- 1.8 to 109.0 +/- 1.7 mg% (p < 0.001), and normalized the plasma glucose level in the second period of SVS infusion. Insulin infusion inhibited the hyperglycemic effect of SVS infusion. The present results show that the elevation of the plasma glucose level during SVS infusion is not due to the reduction of the insulin level. It is probably the effect of SVS on glucose transport across the cell. Insulin response to a high plasma glucose level is suppressed during SVS infusion. Several interactions among norepinephrine, prostaglandin, and nitric oxide are involved in modulating the hyperglycemia during SVS infusion.  相似文献   

10.
This study was performed to determine whether the stimulatory effect of plasma angiotensin II (ANG II) on arginine vasopressin (AVP) and oxytocin (OT) secretion in humans is mediated by AT1 subtype receptors. For this purpose, the effects of the AT1 receptor antagonist losartan (50 mg orally) or a placebo on the AVP and OT responses to ANG II (intravenous infusion for 60 minutes of successively increasing doses of 4, 8, and 16 ng/kg min; each dose for 20 minutes) administration were evaluated in seven normal men. In additional experiments, the same subjects were tested with losartan (50 mg orally) alone or placebo alone. Neither losartan nor placebo given alone modified the basal levels of AVP and OT. ANG II infusion induced significant increments in both serum AVP and OT levels (mean peaks were 1.55 and 1.41 times higher than baseline, respectively). Both hormonal responses to ANG II were completely abolished by pretreatment with losartan. These data provide evidence of AT1 receptor involvement in mediation of the ANG II-stimulating effect on AVP and OT secretion.  相似文献   

11.
1. This investigation was undertaken to compare pre- and postjunctional receptors involved in the responses of the canine mesenteric and pulmonary arteries to angiotensin II. 2. In the mesenteric artery, angiotensin II caused an enhancement of tritium overflow evoked by electrical stimulation (EC30% = 5 nM), the maximal effect representing an increase by about 45%. Postjunctionally, angiotensin II caused concentration-dependent contractions (pD2 = 8.57). Saralasin antagonized both pre- and postjunctional effects of angiotensin II, but it was more potent at post- than at prejunctional level (pA2 of 9.51 and 8.15, respectively), while losartan antagonized exclusively the postjunctional effects of angiotensin II (pA = 8.15). PD123319 had no antagonist effect either pre- or postjunctionally. 3. In the pulmonary artery, angiotensin II also caused an enhancement of the electrically-evoked tritium overflow (EC30% = 1.54 nM), its maximal effect increasing tritium overflow by about 80%. Postjunctionally, angiotensin II caused contractile responses (pD2 = 8.52). As in the mesenteric artery, saralasin antagonized angiotensin II effects at both pre- and postjunctional level and it was more potent postjunctionally (pA2 of 9.58 and 8.10, respectively). Losartan antagonized only the postjunctional effects of angiotensin II (pA2 = 7.96) and PD123319 was ineffective. 4. It is concluded that in both vessels: (1) pre- and postjunctional receptors belong to a different subtype, since they are differently antagonized by the same antagonists; (2) postjunctional receptors belong to AT1 subtype, since they are blocked by losartan but not by AT2 antagonists; (3) prejunctional receptors apparently belong to neither AT1 or AT2 subtype since they are blocked by neither AT1 nor AT2 antagonists.  相似文献   

12.
This study was designed to evaluate in healthy volunteers the renal hemodynamic and tubular effects of the orally active angiotensin II receptor antagonist losartan (DuP 753 or MK 954). Losartan or a placebo was administered to 23 subjects maintained on a high-sodium (200 mmol/d) or a low-sodium (50 mmol/d) diet in a randomized, double-blind, crossover study. The two 6-day diet periods were separated by a 5-day washout period. On day 6, the subjects were water loaded, and blood pressure, renal hemodynamics, and urinary electrolyte excretion were measured for 6 hours after a single 100-mg oral dose of losartan (n = 16) or placebo (n = 7). Losartan induced no significant changes in blood pressure, glomerular filtration rate, or renal blood flow in these water-loaded subjects, whatever the sodium diet. In subjects on a low-salt diet, losartan markedly increased urinary sodium excretion from 115 +/- 9 to 207 +/- 21 mumol/min (P < .05). The fractional excretion of endogenous lithium was unchanged, suggesting no effect of losartan on the early proximal tubule in our experimental conditions. Losartan also increased urine flow rate (from 10.5 +/- 0.4 to 13.1 +/- 0.6 mL/min, P < .05); urinary potassium excretion (from 117 +/- 6.9 to 155 +/- 11 mumol/min); and the excretion of chloride, magnesium, calcium, and phosphate. In subjects on a high-salt diet, similar effects of losartan were observed, but the changes induced by the angiotensin II antagonist did not reach statistical significance. In addition, losartan demonstrated significant uricosuric properties with both sodium diets.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
The effect of 10 min cerebral ischemia on blood-brain barrier permeability to mannitol and sucrose was evaluated in normo- and hyperglycemic rats. In the period immediately after ischemia (1-4 min) the PS (permeability-surface area product) for mannitol was 159% +/- 75 of control (0.17 +/- 0.02 mg/100 g min) in the hyperglycemic rats (plasma glucose 8 mM) and 204% +/- 30 of control (0.09 +/- 0.02 mg/100 g min) in the hyperglycemic rats (plasma glucose 28 mM). Two hours after ischemia, PS for mannitol returned to the control levels in the normoglycemic rats and remained elevated in hyperglycemic animals. The mannitol/sucrose ratios-2.3 +/- 0.4 in normoglycemic rats and 2.6 +/- 0.1 in hyperglycemic rats-remained unchanged after ischemia. As there was no significant difference in the effects of ischemia on normo- and hyperglycemic rats, it was concluded that the deleterious effect of hyperglycemic on clinical recovery after cerebral ischemia in rats (Siemkowicz & Hansen 1978) is not related to enhancement of BBB damage.  相似文献   

14.
1. Currently available antagonists and agonists cannot distinguish between angiotensin AT1 receptor subtypes. 2. We synthesized a series of compounds selected on the basis of having the most diverse structural features with respect to losartan (DuP753), the prototype non-peptide AT1 receptor antagonist. Using a radioligand-receptor binding assay and membranes prepared from COS-M6 cells transfected with individual AT1 receptor subtypes, we determined whether any of these compounds could distinguish between the receptor subtypes. 3. The diversity of the structural features of this series of compounds was reflected by the wide range of affinities (pIC50 values) displayed towards competing with [125I]-Sar1Ile8 angiotensin II for binding to the AT1 receptors. 4. Direct comparisons of the pIC50 values of individual compounds for rat AT1A, AT1B and human AT1 receptors revealed only minor differences. 5. It is concluded that compounds based structurally on losartan are unlikely to distinguish between these receptors.  相似文献   

15.
This study tested the hypothesis that baroreceptor vagal reflex (BVR) attenuation in developing rats, which occurs between postnatal ages (P) of 10 to 20 days old, is due to a central action of angiotensin II (Ang II). In urethane or halothane anaesthetised mature (P > 45) or pre-weaned rats (P14-18), BVR sensitivity was estimated as the ratio between the fall in heart rate and the increase in arterial pressure induced by i.v. phenylephrine. An Ang II AT1 receptor antagonist, losartan, was administered intra-venously (i.v.) or microinjected into brainstem structures. In pre-weaned rats BVR sensitivity was increased significantly by losartan (5 mg/kg; urethane anaesthesia: p < 0.01; halothane anaesthesia: p < 0.05) while a larger dose (10 mg/kg) was ineffective in mature animals. In pre-weaned rats, microinjection of losartan (500 pmol) into the nucleus tractus solitarii (NTS) but neither area postrema nor subjacent nuclei, reversibly increased the sensitivity of BVR (+89 +/- 19%; p < 0.01, n = 12). Microinjection of losartan (500 or 1500 pmol) into the NTS of mature rats did not change the BVR. An AT2-antagonist, PD123-319 did not restore the BVR sensitivity in pre-weaned rats. Thus, AT1 receptors located within the NTS play a pivotal role in the developmental attenuation of the BVR in pre-weaned rats.  相似文献   

16.
1. Profound haemorrhage activates a number of pressor mechanisms, including the release of catecholamines, angiotensin II and arginine-vasopressin, which contribute to the subsequent cardiovascular recovery. Using specific single or combined blockade with prazosin, losartan and Manning compound (AVPX), the aim of this study was to evaluate the involvement of the three pressor systems in blood pressure recovery following severe haemorrhage (20 ml kg-1). 2. Haemorrhage of conscious, unrestrained rats resulted in a significant initial decrease in blood pressure of approximately 60 mmHg, and heart rate of approximately 70 bpm. Then, blood pressure tended to return to the control level within 10 min. The total cardiovascular recovery corresponded to increments of 52 +/- 5 mmHg (81% of the acute fall) for systolic blood pressure, and of 92 +/- 22 bpm (124%) for heart rate at 60 min post-bleeding. Significant falls in haematocrit (-10.5 +/- 1.2%, P < 0.01), in plasma concentrations of proteins (-10.3 +/- 0.9 g l-1, P < 0.01) and haemoglobin (-2.58 +/- 0.72 g 100 ml-1, P < 0.05) were observed at 60 min post-bleeding. 3. Pretreatment with one or two specific antagonists did not exaggerate the initial fall in blood pressure. The initial bradycardia was weakened only by combined blockade with losartan and AVPX. 4. The blood pressure recovery from a haemorrhage was delayed by approximately 25 min by the inhibition of vasopressin activity. The systolic blood pressure recovery in control animals (81% of the acute fall) was blunted by losartan (55% of the acute fall), prazosin (49%), combined losartan and AVPX (36%), prazosin and AVPX (36%), and also by prazosin plus losartan (13%). The diastolic blood pressure recovery was blunted only in the groups where the activity of angiotensin II was inhibited by losartan. 5. In conclusion, we have shown that neither catecholamines, angiotensin II nor vasopressin, although activated, individually compensate the acute hypotensive response to haemorrhage. The contribution of vasopressin to the blood pressure recovery post-bleeding is transient and is rapidly replaced by the pressor activity of the catecholamines and angiotensin II. The full systolic blood pressure recovery from severe haemorrhage requires the combined activity of these two pressor systems, while the diastolic blood pressure recovery seems to be only dependent upon angiotensin II activity.  相似文献   

17.
OBJECTIVES: The angiotensin type 1 (AT1) receptor antagonist, losartan (orally administered), decreases vasoconstrictor effects of angiotensin II (Ang II). Oral losartan is converted into the active metabolite, Exp3174, which causes most of the antagonistic effects. Effects of losartan as such have not been studied after its intra-arterial administration in humans. Therefore, we investigated the effects of both intra-arterially and orally administered losartan on AT1-receptor-mediated vasoconstriction. METHODS: Forearm vascular resistance (FVR) was determined by venous occlusion plethysmography in 24 healthy subjects. Ang II (0.01, 0.1, 1.0, and 10.0 ng/kg/min) was infused into the brachial artery, before and after losartan, administered intra-arterially (dose range 100-3000 ng/kg/min) or orally (50 mg once daily for 5 days). RESULTS: Ang II concentration-dependently increased FVR (P < 0.05); tachyphylaxis did not occur. Losartan alone did not change FVR. Intra-arterially infused losartan dose-dependently inhibited Ang-II-induced vasoconstriction. At a concentration of 10(-8) M Ang II, losartan reduced FVR, as a percentage of baseline values, from 287 +/- 30 to 33 +/- 8% (mean +/- s.e.m.; P < 0.05). Orally given losartan reduced FVR from 297 +/- 40 to 73 +/- 19% (P < 0.05). CONCLUSIONS: Losartan, intra-arterially administered, causes no effect on baseline vascular resistance, but markedly inhibits Ang-II-induced vasoconstriction in the human forearm vascular bed. Relatively high doses of intra-arterial losartan were required when compared to the antagonism by the orally administered drug. These data indicate that Ang-II-induced vasoconstriction is mediated by AT1-receptors, which are blocked by losartan. The more effective antagonism exerted by oral losartan is presumably explained by the formation of Exp3174. Endogenous Ang II does not contribute to baseline vascular tone in healthy, sodium-replete, subjects.  相似文献   

18.
It has been postulated that exaggerated renal sensitivity to angiotensin II may be involved in the development and maintenance of hypertension in the spontaneously hypertensive rat (SHR). The purpose of this study was to compare the renal vascular responses to short-term angiotensin II infusions (50 ng/kg/min, i.v.) in conscious SHRs and Wistar-Kyoto (WKY) rats. Renal cortical blood flow was measured in conscious rats by using quantitative renal perfusion imaging by magnetic resonance, and blood pressure was measured by an indwelling carotid catheter attached to a digital blood pressure analyzer. Renal vascular responses to angiotensin II were similar in control SHRs and WKY rats. Pretreatment with captopril to block endogenous production of angiotensin II significantly augmented the renal vascular response to exogenous angiotensin II in the SHRs but not in the WKY rats. The renal vascular responses to angiotensin II were significantly greater in captopril-pretreated SHRs than in WKY rats (cortical blood flow decreased by 1.66 +/- 0.13 ml/min/g cortex in WKY rats compared with 2.15 +/- 0.14 ml/min/g cortex in SHR; cortical vascular resistance increased by 10.5 +/- 1.4 mm Hg/ml/min/g cortex in WKY rats compared with 15.6 +/- 1.7 mm Hg/ml/min/g cortex in SHRs). Responses to angiotensin II were completely blocked in both strains by pretreatment with the angiotensin II AT1-receptor antagonist losartan. Results from this study in conscious rats confirm previous findings in anesthetized rats that (a) the short-term pressor and renal vascular responses to angiotensin II are mediated by the AT1 receptor in both SHRs and WKY rats, and (b) the renal vascular responses to angiotensin II are enhanced in SHRs compared with WKY rats when endogenous production of angiotensin II is inhibited by captopril pretreatment.  相似文献   

19.
OBJECTIVE: To determine the alterations in glucose metabolism in elderly patients with NIDDM. RESEARCH DESIGN AND METHODS: We studied 9 healthy elderly control subjects (73 +/- 1 yr of age; body mass index 25.7 +/- 0.4 kg/m2) and 9 untreated elderly NIDDM patients (72 +/- 2 yr of age; BMI 25.9 +/- 0.5 kg/m2). Each subject underwent a 3-h oral glucose tolerance test (40 g/m2); a 2-h hyperglycemic glucose clamp study (glucose 5.4 mM above basal); and a 4-h euglycemic insulin clamp (40 mM.m2.min-1). Tritiated glucose methodology was used to measure glucose production and disposal rates during the euglycemic clamp. RESULTS: Patients with NIDDM had a higher fasting glucose (9.3 +/- 0.3 vs. 5.1 +/- 0.1 mM in control subjects vs. NIDDM patients, respectively, P < 0.001) and a greater area under the curve for glucose during the OGTT (16.0 +/- 0.6 vs. 6.7 +/- 0.3 mM in control subjects vs. NIDDM patients, respectively, P < 0.01) than the healthy control subjects. During the hyperglycemic clamp, patients with NIDDM had an absent first-phase insulin response (112 +/- 6 vs. 250 +/- 31 pM in control subjects vs. NIDDM patients, respectively, P < 0.01), and a blunted second-phase insulin response (159 +/- 11 vs. 337 +/- 46 pM in control subjects vs. NIDDM patients, respectively, P < 0.01). Before the euglycemic clamp, fasting insulin (99 +/- 5 vs. 111 +/- 10 pM in control subjects vs. NIDDM patients, respectively) and hepatic glucose production (11.8 +/- 0.7 vs. 11.5 +/- 0.5 mumol.kg-1-min-1 in control subjects vs. NIDDM patients, respectively) were similar. Steady-state (180-240 min) glucose disposal rates during the euglycemic clamp were slightly, but not significantly, higher in the normal control subjects (36.5 +/- 1.1 vs. 33.1 +/- 1.9 mumol.kg-1-min-1 in control subjects vs. NIDDM patients, respectively, NS). CONCLUSIONS: We conclude that NIDDM in nonobese elderly subjects is characterized by a marked impairment in insulin release. This may be attributable to the toxic effects of chronic hyperglycemia on the beta-cell. When compared with age-matched control subjects, the NIDDM patients showed no increase in fasting insulin or hepatic glucose production, and insulin resistance was mild.  相似文献   

20.
This study demonstrated the existence of a specific binding site for angiotensin IV in porcine aortic endothelial cells. Non-equilibrium kinetic analyses at 37 degrees C allowed the calculation of a kinetic Kd of 0.44 nM. Pseudo-equilibrium saturation binding studies at 37 degrees C for 90 min indicated the presence of a single high-affinity site (Kd = 3.87 +/- 0.60 nM), saturable and abundant (Bmax = 9.64 +/- 1.44 pmol/mg protein). Competitive binding studies demonstrated the following rank order of effectiveness: angiotensin IV > angiotensin III > angiotensin II > angiotensin I > angiotensin II-(1-7), while 2-n-butyl-4-chloro-5-hydroxymethyl-1 [(2'-(1H-tetrazol-5-yl) biphenyl-4-yl) methyl] imidazol (DuP 753: losartan), 1-(4-amino-3-methyl-phenyl) methyl-5-diphenylisoethyl-4,5,6,7-tetrahydro-1H-imidazo [4,5-C] pyridine-6-carboxylic acid (PD 123177) or nicotinic acid-Tyr-(N alpha -benzyl-oxycarbonyl-Arg) Lys-His-Pro-Ile-OH (CGP 42112A) were inactive at the concentration of 100 microM. This binding site is, therefore, distinct from angiotensin II receptors, AT1 and AT2. Addition of the divalent cations Mg2+, Mn2+ or Ca2+ to the incubation buffer resulted in 90-95% inhibition of the [125I]angiotensin IV-specific binding to porcine aortic endothelial cells. Furthermore, the chelator, EGTA, at 5 mM increased the number of binding sites (Bmax = 17.8 +/- 2.5 pmol/mg protein), with no change in affinity (Kd = 5.7 +/- 1.3 nM). Exposure of porcine aortic endothelial cell membranes to the non-hydrolyzable GTP analog, GTP gamma S, had no effect on [125I]angiotensin IV binding. The presence of a high concentration of binding sites for angiotensin IV in porcine aortic endothelial cells suggests that this peptide may play an important role in the modulation of the cardiovascular system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号