共查询到18条相似文献,搜索用时 78 毫秒
1.
2.
讨论了冷轧带肋钢筋生产中,为使成品带肋钢筋得到较好的力学性能,尤其是较高的伸长率,采用机械法消除应力(反复弯曲矫直)工艺的参数选取原则,对单面矫直,双面矫直及不同压下量做了对比实验研究。 相似文献
3.
4.
5.
简述了冷轧带肋钢筋的生产工艺及性能。4种不同管径的砼排水管按等强度设计原则,以冷轧带助钢筋替代原用的冷拔低碳钢丝后,可节省钢材10%~31%,并提高砼排水管的裂缝荷载,破坏荷载等质量指标和安全度。 相似文献
6.
8.
9.
冷轧带肋钢筋及焊接钢筋网的发展前景 总被引:2,自引:0,他引:2
介绍了冷轧带肋钢筋和焊接钢筋网的用途、生产工艺及特点,并指出其生产中存在的问题,分析了其发展前景,认为其市场前景广阔,目前远没有满足市场需求。 相似文献
10.
11.
在深入分析热变形工艺参数对Ti-15-3合金显微组织及成形载荷的影响的基础上,以变形温度、变形程度和变形速率等热变形工艺参数作为设计变量,以显微组织和成形力的最佳综合为目标,建立了该合金热塑性成形工艺参数的多目标优化数学模型。以显微组织参数和成形力的人工神经网络预测模型作为优化算法的知识源,将人工神经网络与修正的遗传算法相结合,对Ti-15-3合金的热塑性成形工艺参数进行优化。结果表明,提出的修正的遗传算法是有效的,采用将其与人工神经网络相结合的方法对钛合金的热塑性成形工艺参数进行优化是可行的。 相似文献
12.
13.
14.
利用Multipas退火试验机模拟连续退火工艺,研究了退火工艺对4.5%Cr冷轧耐候钢组织性能的影响。结果表明,随着退火温度的升高,试验钢的强度先降低后增加,当退火温度为830 ℃时,强度最高,屈服强度均值为353 MPa,抗拉强度均值约为621 MPa。冷速(50 ℃/s、30 ℃/s)对试验钢强度影响有限。当退火温度≤800 ℃时,试验钢的组织只发生了回复再结晶,组织由铁素体、珠光体和碳化物组成。当退火温度>800 ℃,铁素体组织发生了奥氏体化,冷却后形成了贝氏体。当Cr含量(质量分数)提高至4.5%,试验钢的相对腐蚀速率为26%(相对于Q345B钢),相对普通耐候钢SPA-C耐候性能提高约一倍。 相似文献
15.
16.
Explosive cladding is best known for its capability to join a wide variety of both similar and dissimilar combinations of
metals that cannot be joined by other conventional metal joining techniques. An attempt has been made to optimize, the tensile
and shear strengths of an explosive clad interface using fuzzy logic and genetic algorithm. The parameters considered for
this study include flyer plate thickness, loading ratio, angle of inclination, and stand off distance. The experimental data
was trained and simulated using fuzzy logic and the optimization of process parameters was performed using genetic algorithm.
The optimized process parameters were validated using experimental results. 相似文献
17.
18.
The trial-and-error method is widely used for the current optimization of the steel casting feeding system, which is highly random, subjective and thus ineff icient. In the present work, both the theoretical and the experimental research on the modeling and optimization methods of the process are studied. An approximate alternative model is established based on the Back Propagation(BP) neural network and experimental design. The process parameters of the feeding system are taken as the input, the volumes of shrinkage cavities and porosities calculated by simulation are simultaneously taken as the output. Thus, a mathematical model is established by the BP neural network to combine the input variables with the output response. Then, this model is optimized by the nonlinear optimization function of the genetic algorithm. Finally, a feeding system optimization of a steel traveling wheel is conducted. No shrinkage cavities and porosities are induced through the optimization. Compared to the initial design scheme, the process yield is increased by 4.1% and the volume of the riser is decreased by 5.48×10~6 mm3. 相似文献