首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report on the physical characteristics of Aitken nuclei and their relation to air mass type at Ross Island, Antarctica. The size distribution spectrum of the particles was derived with a diffusion battery and non-linear mathematical inversion and is considered to be quite accurate over the particle diameter range 0.01 < d < 0.2 μm.

The Aitken nuclei concentration, no, decreased at Ross Island by about an order of magnitude from summer (no = 600 cm−3) to winter (no = 100 cm−3). Particle size varied with air mass type: Maritime polar air masses had a geometric mean particle diameter dg = 0.011 μm, while continental Antarctic, cA, air masses possessed somewhat smaller particles (i.e. dg 0.005 μm). The anomalously small particles associated with cA air suggests the presence of an upper tropospheric or partly stratospheric origin of nuclei perhaps associated with mixing formed by breaking waves over the Ellsworth Range in Marie Byrd Land.  相似文献   


2.
A quartz crystal microbalance (QCM) based instrument has been developed for real-time aerosol mass distribution measurement. It includes two key components: a six-stage QCM micro-orifice cascade impactor and a novel relative humidity (RH) conditioner. This instrument operates at a flow rate of 10 L·min?1 and measures the mass of the collected particles in six aerodynamic diameter channels between 45 nm and 2.5 μm. The RH conditioner ensures that the aerosol particles are collected at an RH between 40% and 65%, which is critical for eliminating particle bounce and for ensuring optimal particle coupling with the QCM. The nozzles of the impactors are clustered in the center of the nozzle plates. Therefore, particles are deposited on the central electrode of the QCM, where the mass calculated from first principles (i.e., Sauerbrey equation) agrees with the actual collected mass. The QCM response is linear up to around 130 μg for solid particles and up to around 2 μg for liquid particles. The collection efficiency curves of the QCM impactor stages were measured experimentally with monodisperse aerosols, and the results agree with the predictions of established impactor theory. This QCM-based instrument has also been tested with ambient aerosols with varying temperature and relative humidity. The aerosol distributions measured by this new instrument are in good agreement with simultaneous independent measurements carried out with a wide-range particle spectrometer (MSP Model 1000XP WPS).

Copyright © 2016 American Association for Aerosol Research  相似文献   

3.
Experimental filtration data were collected in an effort to validate an impaction model previously developed and presented. Using a sampler with a 9.5 μm pore diameter Nuclepore filter, collection efficiencies were measured for both liquid and solid aerosols over a size range of 2–9 μm. Data for the liquid aerosol showed good agreement with the impaction model; however, data for the solid aerosol indicated an appreciably lower collection efficiency than predicted by the model. The liquid aerosol data validate the impaction model. The solid aerosol data indicate particle bounce or reintrainment subsequent to impact and underscore particle capture as a problem to be dealt with if the Nuclepore surface is to be used as a size selective filter.  相似文献   

4.
The use of particle inertia to bring particles seeded in a viscous, incompressible jet to a sharp focus is considered. Earlier work on aerodynamic focusing in seeded supersonic jets has involved relatively large Reynolds numbers Re (where viscous effects due to the nozzle walls are negligible), and has reported sharp focal points for particles characterized by a Stokes number exceeding a certain critical value S*. Here a rapidly converging nozzle geometry is shown to yield similarly sharp aerodynamic focusing of particles in sheathed subsonic aerosol jets at Re as low as 15. The diameter d of the particle deposits collected on a greased impaction plate placed normally to the aerosol jet is measured as a function of the distance L between the nozzle and the collector. A numerical solution of the steady, axisymmetric, incompressible Navier-Stokes equations along with extensive particle trajectory calculations complements the available experimental data. In the range of Re for which experimental data are available (15 < Re < 300), the measured particle deposit diameters agree reasonably closely with the calculated values, and only a mild Re effect on d is observed. In this regime, provided a sheath air fraction of 50% is used, concentration of the particles by a factor on the order of 1000 is observed in the focal region, comparable to that previously obtained in supersonic seeded jets. Numerical calculations performed for Re < 15 show that aerodynamic focusing arises even at Re = 3. The presence of the collector plate is shown numerically to have little effect on the particle aerodynamic behavior in the focusing regime (i.e. S>S*).  相似文献   

5.
吴冉 《山东化工》2011,40(6):3-6
前面的研究表明,双循环旋风分离器的设计使得大于3μm颗粒的分离效率接近100%。本文通过CFD模拟软件Fluent 6.2对带有防返混锥的双循环旋风分离器内的压力场和颗粒轨迹进行了数值模拟,并与实验结果进行了比较,模拟结果和实验结果基本一致。模拟得出防返混锥可使分离器的阻力系数增加12%,并减小灰仓内3μm以下颗粒的返混量。实验结果表明,进口气速在8~21m/s时,防返混锥可使主进口和回流口的阻力系数分别增加14.6%和11.8%;当进口平均气速在15~19m/s时,若采用主进口进料,防返混锥可使总分离效率提高0.15%~0.2%;若采用回流口进料,可提高1.5%~2%。  相似文献   

6.
Field experiments with low-pressure cascade impactors (Type AERAS LPI 3010.06) have been carried out to determine whether coating of the impaction surfaces is necessary for the correct determination of aerosol mass size distributions in rural and suburban areas. In general, an impactor with coated surfaces collects up to 100% more giant particles (da > 1 μm), and more than 20% more total mass, than an uncoated reference impactor. Also, the size distribution is in much better agreement with optical particle counter data, and the total mass is closer to values determined with a high-volume filter sampler, than in the case of the uncoated impactor.  相似文献   

7.
Recently, the protection of health care workers from tuberculosis-containing aerosols has been the subject of considerable debate. An experimental apparatus and test protocol were developed to measure the collection efficiency of surgical mask and respirator filter media using a microbial aerosol challenge. Mycobacterium chelonae (M. chelonae), used as a surrogate for Mycobacterium tuberculosis, was generated from liquid suspension using a Collison nebulizer. Upstream and downstream concentrations of viable aerosol particles were measured using Andersen cascade impactors, while total particle concentrations were measured with an aerodynamic particle sizer (APS). A monodisperse polystyrene latex (PSL) sphere aerosol (0.804 μm) was used in separate experiments to measure filter efficiency; concentrations were determined with the APS. The mycobacterial aerosol ranged in size from 0.65 to 2.2 μm when measured with the cascade impactor. A similar size range was found with the APS, yielding a count median diameter of about 0.8 μm. Samples of the mycobacterial aerosol were collected on glass slides, stained M. chelonae, as determined by environmental scanning electron microscope, were found to be rod shaped with an average length of 2 μm and average width of 0.3 μm. To evaluate the apparatus over a range of filter efficiencies (10–100%), different layers of fiberglass filter paper were tested for penetration using a 0.12 μm dioctyl phthalate (DOP) aerosol measured with a light scattering photometer, in addition to the mycobacterial and PSL aerosols. For the range of efficiencies tested it was shown that filter collection of DOP was linearly related to that of both mycobacterial and PSL sphere aerosols (r2 = 0.99), demonstrating that an inert aerosol may be used to predict the collection of biological aerosols by such filter media.  相似文献   

8.
Particle deposition and reentrainment experiments were performed in a two-stage electrostatic precipitator (ESP), consisting of positive corona precharger and collecting electrode sections. Attention was focused on studying the indoor air pollution deposition and reentrainment into six size ranges from 0.3 to >10?μm. Tests were performed in an office room (200?m3) for airflow velocities from 1.4 to 8?m/s. The effect of airflow velocity on the collection efficiency of the ESP was investigated both experimentally and analytically to study reentrainment phenomena in a turbulent flow. A stationary two-dimensional analytical model was carried out by modeling the particle transport. The boundary conditions for charged particles on collecting and repelling electrodes were determined by physical considerations, including chaotic and drift motions, the reflection of charged particles from a surface, and the reentrainment of charged particles. A decrease in the experimental collection efficiency for large particle diameters (≥0.5?μm), as compared to the theoretical prediction, was interpreted as the reentrainment of particles. The size-resolved dust reentrainment fluxes from the collecting electrode were evaluated in two limiting cases, considering that either the reentrained particles are not charged or that they are charged as the particles in the deposition flux. Dimensional analysis is applied to these results, introducing the wall friction velocity as a universal parameter that determines the flow character. In general, the particles with diameters <5?μm and >5?μm exhibit different reentrainment behavior.

Copyright © 2018 American Association for Aerosol Research  相似文献   

9.
Equations relating particle size of aerosols to deposition by impaction, diffusion and sedimentation are applied to a previously established model of the guinea pig lung using a tidal volume of 4.44 cm3 and a respiratory rate of 60 breath min−1. These calculated deposition values are combined with measured values of nasal deposition to give an estimate of the particle deposition characteristics of the guinea pig respiratory tract. The nasopharyngeal-tracheobronchial (NP-TB) region removes 99% of unit density spherical particle 10 μm or more in diameter. Deposition in this region reaches a minimum of 10% at a particle diameter of 0.8 μm. For particles less than 0.8 μm, deposition increases because of diffusion. Deposition in the pulmonary region is about 17% for particle diameters from 0.08 to 4 μm. For typical polydisperse aerosols with mass median diameters above 1 μm, a greater fraction of the mass than of the count is deposited in the NP-TB region, while a smaller fraction of the mass than of the count is deposited in the pulmonary region. Aerosol clouds with mass median diameters less than 0.1 μm deposit a greater fraction of the count than of the mass in the NP-TB region and a smaller fraction of the count than of the mass in the pulmonary region.  相似文献   

10.
A humidity control system was operated upstream of two collocated MOUDIs (micro-orifice uniform deposit impactors) for sampling ambient aerosol particles. One MOUDI used silicone-grease-coated aluminum foils (ALs) as the impaction substrates and was considered as the reference impactor, while the other used uncoated ALs or uncoated Teflon filters (TFs) as the impaction substrates for quantifying the effect of different relative humidities (RHs) and impaction substrates on the PM0.1 concentrations and mass distributions of ambient PMs. Test results showed that decreasing RH in general increased particle bounce from uncoated substrates with the bounce from uncoated ALs being more severe than that from uncoated TFs. Particle bounce did not influence the overall mass distribution of ambient fine particles when RH ranged between 40% and 80%, whereas it led to undersampling of particles greater than 2.5 μm in aerodynamic diameter severely. Oversampling of PM0.1 occurred by as much as 95%–180% or 25%–55% when the MOUDI used uncoated ALs or TFs, respectively, as RH was reduced from 50% to 25%. Particle bounce was found to be negligible, and PM0.1 and PM2.5 could be sampled accurately with less than 5% error at the RH of 75%–80% or 65%–80% when uncoated ALs or TFs were used, respectively.  相似文献   

11.
The effects of surface morphology on the field emission of non-doped polycrystalline diamond films with thicknesses ranging from 5 to 55 μm were studied. Diamond films grown by a microwave-plasma chemical vapor deposition technique had both the diamond and non-diamond components with pyramidal and angular crystalline structures. Although the average crystallite size increased with increasing the film thickness (d), the volume fraction of the non-diamond components in the films was insensitive to the film thickness. However, the turn-on electric field, FT, (defined as the low-end electric field to emit electrons) showed a U-shape dependence on the film thickness. This U-shape dependence was explained by a model in which the emission current was controlled by Fowler–Norheim tunneling of electrons at surface of the pyramids when d was thinner than 20 μm and by carrier transport in the polycrystalline diamond film when d was thicker than 20 μm. The lowest field of 4 V/μm was obtained in the film with 20 μm thick.  相似文献   

12.
Concentrations of large (d > 10 μm) inorganic and organic particles varied widely at ground level and at subcloud altitudes. Particle concentration decreased at a slower rate aloft than at ground level; as a result, the relative abundance of large aerosol particles aloft tended to increase with increasing particle size. A substantial fraction of organic particles aloft was found to be responsible for this trend.

Curves of freezing frequency indicate the presence of two distinctive sources of freezing nuclei derived from large aerosol particles active in the − 9 to − 12°C and − 19 to − 22°C temperature ranges.  相似文献   


13.
The flexure creep behaviour of monolithic Al2O3 and 10 vol% SiC-particle reinforced Al2O3 matrix composites was investigated in air atmosphere at 1160 to 1400 °C and under a stress of 40 to 125 MPa. Two kinds of SiC particles with different particle sizes and oxygen contents were used in the composites, one having an average size of 0.6 μm with 1.7 vol% SiO2 impurities and the other of average size 2.7 μm with 3.4 vol% SiO2 impurities. Compared with the creep behaviour of monolithic Al2O3 the strain rate of the composites with 0.6 μm SiC particles did not decrease; however, the composites with 2.7 μm SiC particles exhibited excellent creep resistance. Microstructure analysis showed that the Al2O3 grains in the composites with 0.6 μm SiC particles were mainly equiaxed with most of the SiC particles lying at the grain boundaries or triplegrain junctions, whereas the grain features of the composites with 2.7 μm SiC particles were irregular and elongated and most of the SiC particles were entrapped into Al2O3 matrix grains. It was revealed that the entrapment of 2.7 μm SiC particles into Al2O3 matrix grains was related to the high SiO2 impurity content on SiC particle surfaces, and the change of grain morphology and the good high-temperature oxidation resistance were responsible for the creep resistance increase of the composites with 2.7 μm SiC particles.  相似文献   

14.
The total and regional deposition of monodisperse aerosols in the human respiratory tract has been measured in 12 healthy subjects breathing through the mouth. Radioactively labelled polystyrene particles in the aerodynamic diameter range 3.5–10.0 μm were employed. The total deposition results are similar to those reported by Stahlhofen et al. (1980), showing only a slight progressive increase with particle size, from a mean fraction of 0.79 of the inhaled aerosol at 3.5 μm, to 0.88 for 10 μm particles. The extrathoracic airways show a very marked deposition at all sizes, predominantly in the throat. The throat values rise rapidly from a mean of 0.09 at 3.5 μm to 0.36 at 10 μm particle diameter. Two intrathoracic fractions were also obtained by the widely accepted method of measuring the relative amounts of activity cleared from the thorax as a function of time. Alveolar deposition was apparently still some 0.06 of the inhaled aerosol at 10 μm particle diameter. Tracheo-bronchial deposition showed little change at any particle size except at 3.5 μm, when it was 0.24 of the inhaled aerosol.  相似文献   

15.
The effect of particle shape on the diffusion charging of aerosols was investigated. The charging-equivalent sphere diameter dQE, found previously to be much larger than the mobility diameter dm, may be related to the uncharged fraction of particles leaving a bipolar diffusion charger. This fraction was measured for three types of particles classified by electrical mobility: polystyrene latex (PSL) spheres, ammonium sulfate spheres and TiO2 agglomerates of 10–20 nm primary particles. The uncharged fraction was 5% lower for the agglomerates than for spheres with the same mobility, for size range 100 < dm < 800 nm. This implies that dQE 1.1 dm for the agglomerates, which is a smaller difference between dQE and dm than reported by previous studies, but is consistent with the theoretical predictions (Laframboise and Chang, 1977, J. Aerosol Sci. 8, 331–338).  相似文献   

16.
A method and test system have been developed for the laboratory evaluation of the performance of bioaerosol samplers. The method differentiates between the overall physical sampling efficiency (which reflects the inlet and collection efficiencies) and the biological sampling efficiency (which reflects the survival of the test microorganisms during the sampling process). The number concentrations of laboratory-generated bioaerosol particles are measured with an aerosol size spectrometer up- and downstream of the bioaerosol sampler being tested. In a bioaerosol impactor, which was specially designed for testing microbiological aspects of bioaerosol sampling, the inlet and collection efficiencies are differentiated by measuring downstream of the collection surface location with and without the collection surface in place. The number of recovered particles is counted as microcolonies with a microscope after sampling the bioaerosol particles into agar and culturing them. The total recovery of these bioaerosol particles is determined as a ratio of the number of viable microorganisms recovered to the number of bioaerosol particles present in the air sampling volume upstream from the sampler. This total recovery is a measure of the ratio of culturable to non-culturable bacteria present in the air. By measuring physical and microbiological aspects simultaneously, information is gained on aspects of bioaerosol sampling that cannot be determined by either of these branches of science alone. This is exemplified by tests on the influence of relative humidity and desiccation time on colony count.

The newly-developed system can be used to test any bioaerosol sampler. A special single-stage impactor was designed, built and used to study how different sampling and analysis variables affect the total recovery of bioaerosol particles. The designed impactor was calibrated using PSL particles. Its inlet sampling efficiency was found to be within the range of 96–99.5%, depending on the sampling conditions and particle size, if the latter is less than 8 μm (this range represents single bacteria, bacterial agglomerates, and fungi). The collection efficiency was found to be about 100% when collecting PSL particles larger than 0.7 μm in diameter at 201 min−1 or higher air flows.

The total recovery of microorganisms measured under these conditions is characterized only by the “survivability” of microorganisms during their sampling. It was found that relative humidity had a pronounced effect on total Pseudomonas fluorescens recovery. Experimental data also showed that the sampling time may be limited due to bacterial desiccation and subsequent loss in viability of collected microorganisms.  相似文献   


17.
The determination of the collection efficiency (CE) of particles during transport, vaporization, and ionization in the aerosol mass spectrometer (AMS), which uses vaporizer to evaporate non-refractory particles with subsequent ionization, is important for accurately quantifying the concentrations of chemical constituents. Particle bounce in the vaporizer can be considered as one of the most important parameters influencing the CE of particles. Substrates with various shapes (flat, cylindrical, reverse-conical, cup, trapezoidal, and reverse-T), materials (stainless steel, copper, tungsten, and molybdenum), pores with average sizes of 0.2, 1, 5, 20, and 100 μm, and mesh with a size of 79 μm, which can be a possible candidate for the vaporizer in the AMS, were constructed. Bounce fractions of sub-micrometer particles (polystyrene latex, oleic acid, and dioctyl phthalate) were determined using the differential mobility analyzer (DMA)-impactor technique under a constant impact velocity. For the porous substrate, the particle bounce fraction significantly decreased with increasing pore size and porosity, but there was an upper limit for the pore size above which the particle bounce fraction no longer decreased significantly (i.e., the rebounded particles successfully escaped from the pores). The mesh substrate also had a lower particle bounce fraction than the flat substrate. Among the tested materials, the copper substrate having the lowest hardness and elasticity had the lowest particle bounce fraction. In addition, the reverse-T shape substrate having more available surfaces for particle entrapment led to the reduction of particle bounce fraction. In terms of phase, the liquid particles had lower particle bounce fractions than the solid particles. Our results suggest that the vaporizer in the AMS should provide traps for multiple collisions of the rebounding particles with an appropriate porosity or mesh and should be made of low-hardness materials to minimize particle bounce.

Copyright 2015 American Association for Aerosol Research  相似文献   

18.
To classify fine powders with particles smaller than 1 μm in diameter, air classifier design must take three factors into consideration: dispersion of feed powders, air flow uniformity in the classification zone, and recovery of fine particles adhering to the coarse fraction. The effects on the classification performance of a centrifugal air classifier using a dispersion nozzle for particle dispersion and a circulation mechanism using channel air jets for the recovery of fine particles are discussed.

By using a dispersion nozzle, the classification sharpness index was improved below 0.8 (Dp/Dp50) and the fine fraction yield was improved by 64% without changing size distribution. The circulation mechanism using channel air improved classification performance by 58% of the classification sharpness index and 65% of the fine fraction yield, although the particle size distribution of the fine fraction became 0.1 μm coarser than that without channel air.  相似文献   


19.
The aim of this study is computational fluid dynamic (CFD) simulation of the single-phase pressure drop in fixed and expanded beds. A fixed bed with a column to particle diameter ratio (D/dp) of 5 and having 151 particles arranged in 8 layers was taken as a computational geometrical model. In the case of expanded beds, 0.605 voidage bed consisted of 105 particles and 0.783 voidage bed consisted of 55 particles. Simulations were performed in the creeping, transition and turbulent flow regimes, where Reynolds number (dpVLρL/μL) was varied from 0.1 to 10,000. The deviations from Ergun's equation due to the wall effects, which are important in D/dp < 10 beds, were well explained by the CFD simulations. Thus, an increase in the pressure drop was observed due to the wall friction in the creeping flow, whereas, in turbulent regime a decrease in the pressure drop was observed due to the channeling near the wall. Energy balance has been established through the CFD predicted values of energy dissipation rates (viscous as well as turbulent).  相似文献   

20.
The efficiency of separation for fine coal in a 150 mm dia. dense-medium hydrocyclone has been determined. The partition curves have been measured for particles in the size ranges −500 μm +425 μm, −300 μm +250 μm, −150 μm +125 μm and −90 μm +75 μm. The cut point for separation increases with a decrease in particle size and the efficiency of separation decreases as particle size decreases. The cut point of separation varies with medium specific gravity but the efficiency of separation does not. Neither the cut point of separation nor the efficiency of separation is greatly influenced by the cyclone feed rate, provided that overloading does not occur.

The results lead to an accurate predictive model for the calculation of the partition curve as a function of coal particle size and medium specific gravity. The model allows the prediction of the performance of a dense-medium hydrocyclone for the washing of fine coal having arbitrary washability characteristics and particle size distribution. The model is used to demonstrate that a two-stage dense-medium hydrocyclone configuration can significantly improve the cleaning performance for a coal that has good ash-liberation characteristics. However, multi-stage dense-medium hydrocyclones do not offer any real performance advantages for coal that has poor ash-liberation characteristics.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号