首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polymer-dispersed liquid crystal (PDLC) devices are truly promising optical modulators for information display, smart window as well as intelligent photoelectronic applications due to their fast switching, large optical modulation as well as cost-effectiveness. However, realizing highly soft PDLC devices with sensing function remains a grand challenge because of the intrinsic brittleness of traditional transparent conductive electrodes. Here, inspired by spiderweb configuration, a novel type of silver nanowires (AgNWs) micromesh-based stretchable transparent conductive electrodes (STCEs) is developed to support the realization of soft PDLC device. Benefiting from the embedding design of AgNWs micromesh in polydimethylsiloxane (PDMS), the STCEs can maintain excellent electrical conductivity and transparency even in various extreme conditions such as bending, folding, twisting, stretching as well as multiple chemical corrosion. Further, STCEs with the embedded AgNWs micromesh endow the assembled PDLC device with excellent photoelectrical properties including rapid switching speed (<1 s), large optical modulation (69% at 600 nm), as well as robust mechanical stability (bending over 1000 cycles and stretching to 40%). Moreover, the device displays the pressure sensing function with high sensitivity in response to pressure stimulus. It is conceivable that AgNWs micromesh transparent electrodes will shape the next generation of related soft smart electronics.  相似文献   

2.
The transfer of stretchable electrodes or devices from one substrate to another thin elastomer is challenging as the elastic stamp often yields a huge strain beyond the stretchability limit of the electrodes at the debonded interface. This will not happen if the stamp is rigid. However, a rigid material cannot be used as the substrate for stretchable electrodes. Herein, silk fibroin with tunable rigidity (Young's modulus can be changed from 134 kPa to 1.84 GPa by controlling the relative humidity) is used to transfer highly stretchable metal networks as highly conformable epidermal electrodes. The silk fibroin stamp is tuned to be rigid during peeling, and then be soft and highly stretchable as a substrate when laminated on moisturized human skin. In addition, the epidermal electrodes exhibit no skin irritation or inflammation after attaching for over 10 d. The high compliance results in a lower interface impedance and lower noises of the electrode in measuring electromyographic signals, compared with commercial Ag‐AgCl gel electrodes. The strategy of tuning the rigidity at different stages of transfer is a general method that can be extended to the transfer of other stretchable electrodes and devices for epidermal electronics, human machine interfaces, and soft robotics.  相似文献   

3.
The development of stretchable/soft electronics requires power sources that can match their stretchability. In this study, a highly stretchable, transparent, and environmentally stable triboelectric nanogenerator with ionic conductor electrodes (iTENG) is reported. The ion‐conducting elastomer (ICE) electrode, together with a dielectric elastomer electrification layer, allows the ICE‐iTENG to achieve a stretchability of 1036% and transmittance of 91.5%. Most importantly, the ICE is liquid solvent‐free and thermally stable up to 335 °C, avoiding the dehydration‐induced performance degradation of commonly used hydrogels. The ICE‐iTENG shows no decrease in electrical output even after storing at 100 °C for 15 h. Biomechanical motion energies are demonstrated to be harvested by the ICE‐iTENG for powering wearable electronics intermittently without extra power sources. An ICE‐iTENG‐based pressure sensor is also developed with sensitivity up to 2.87 kPa?1. The stretchable ICE‐iTENG overcomes the strain‐induced performance degradation using percolated electrical conductors and liquid evaporation‐induced degradation using ion‐conducting hydrogels/ionogels, suggesting great promising applications in soft/stretchable electronics under a relatively wider temperature range.  相似文献   

4.
Inspired by nature, various self-healing materials that can recover their physical properties after external damage have been developed. Recently, self-healing materials have been widely used in electronic devices for improving durability and protecting the devices from failure during operation. Moreover, self-healing materials can integrate many other intriguing properties of biological systems, such as stretchability, mechanical toughness, adhesion, and structural coloration, providing additional fascinating experiences. All of these inspirations have attracted extensive research on bioinspired self-healing soft electronics. This review presents a detailed discussion on bioinspired self-healing soft electronics. Firstly, two main healing mechanisms are introduced. Then, four categories of self-healing materials in soft electronics, including insulators, semiconductors, electronic conductors, and ionic conductors, are reviewed, and their functions, working principles, and applications are summarized. Finally, human-inspired self-healing materials and animal-inspired self-healing materials as well as their applications, such as organic field-effect transistors (OFETs), pressure sensors, strain sensors, chemical sensors, triboelectric nanogenerators (TENGs), and soft actuators, are introduced. This cutting-edge and promising field is believed to stimulate more excellent cross-discipline works in material science, flexible electronics, and novel sensors, accelerating the development of applications in human motion monitoring, environmental sensing, information transmission, etc.  相似文献   

5.
Integrating self‐healing capabilities into soft electronic devices increases their durability and long‐term reliability. Although some advances have been made, the use of self‐healing electronics in wet and/or (under)water environments has proven to be quite challenging, and has not yet been fully realized. Herein, a new highly water insensitive self‐healing elastomer with high stretchability and mechanical strength that can reach 1100% and ≈6.5 MPa, respectively, is reported. The elastomer exhibits a high (>80%) self‐healing efficiency (after ≈ 24 h) in high humidity and/or different (under)water conditions without the assistance of an external physical and/or chemical triggers. Soft electronic devices made from this elastomer are shown to be highly robust and able to recover their electrical properties after damages in both ambient and aqueous conditions. Moreover, once operated in extreme wet or underwater conditions (e.g., salty sea water), the self‐healing capability leads to the elimination of significant electrical leakage that would be caused by structural damages. This highly efficient self‐healing elastomer can help extend the use of soft electronics outside of the laboratory and allow a wide variety of wet and submarine applications.  相似文献   

6.
The authors develop a mechanically robust silver nanowires (AgNWs) electrode platform for use in flexible and stretchable triboelectric nanogenerators (TENGs). The embedding of an AgNWs network into a photocurable or thermocurable polymeric matrix dramatically enhances the mechanical robustness of the flexible and stretchable TENG electrodes while maintaining a highly efficient triboelectric performance. The AgNWs/polymeric matrix electrode is fabricated in four steps: (i) the AgNWs networks are formed on a hydrophobic glass substrate; (ii) a laminating photocurable or thermocurable prepolymer film is applied to the developed AgNWs network; (iii) the polymeric matrix is crosslinked by UV exposure or thermal treatment; and (iv) the AgNWs‐embedded polymeric matrix is delaminated from the glass substrate. The AgNWs‐embedded polymeric matrix electrodes with four different sheet resistances, controlled by varying the AgNWs network deposition density, are deployed in TENG devices. The authors find that the potential difference between the two contact surfaces of the AgNWs network‐embedded polymer matrix electrodes and the nylon (or perfluoroalkoxy alkane) governs the output triboelectric performances of the devices, rather than the sheet resistance. Both Kelvin probe force microscopy and numerical simulations strongly support these observations.  相似文献   

7.
Accompanying the boom in multifunctional wearable electronics, flexible, sustainable, and wearable power sources are facing great challenges. Here, a stretchable, washable, and ultrathin skin-inspired triboelectric nanogenerator (SI-TENG) to harvest human motion energy and act as a highly sensitive self-powered haptic sensor is reported. With the optimized material selections and structure design, the SI-TENG is bestowed with some merits, such as stretchability ( ≈ 800%), ultrathin ( ≈ 89 µ m), and light-weight ( ≈ 0.23 g), which conformally attach on human skin without disturbing its contact. A stretchable composite electrode, which is formed by homogenously intertwining silver nanowires (AgNWs) with thermoplastic polyurethane (TPU) nanofiber networks, is fabricated through synchronous electrospinning of TPU and electrospraying of AgNWs. Based on the triboelectrification effect, the open-circuit voltage, short-circuit current, and power density of the SI-TENG with a contact area of 2 × 2 cm2 and an applied force of 8 N can reach 95 V, 0.3 µ A, and 6 mW m−2, respectively. By integrating the signal-processing circuits, the SI-TENG with excellent energy harvesting and self-powered sensing capability is demonstrated as a haptic sensor array to detect human actions. The SI-TENG exhibits extensive applications in the fields of human–machine interface and security systems.  相似文献   

8.
Wearable electronics have become an important part of daily lives. However, its rapid development results in the problem of electronic waste (e-waste). Consequently, recyclable materials suitable for wearable electronics are highly sought after. In this study, a conductive recyclable composite (PFBC) is designed based on a dynamic covalently cross-linked elastomer and hierarchical hybrid nanofillers. The PFBC shows excellent wide-ranging properties including processability, elasticity, conductivity, and stability, which are superior to previous materials used for recyclable electronics, and exhibits outstanding mechanical properties and environmental tolerance including high temperature, high humidity, brine, and ethanol owing to its covalent cross-linking. Reversible dissociation of Diels–Alder networks allows for convenient processing and recycling. After three recycles, the toughness of the PFBC remained at 10.1 MJ m−3, which is conspicuous among the reported recyclable electronic materials. Three types of PFBC-based wearable electronics including a triboelectric nanogenerator, a capacitive pressure sensor, and a flexible keyboard, are successfully 3D printed with excellent performance. The PFBC possessed both recyclability and degradability, the combination of which provides a new way to reduce e-waste. This is the first work to recycle electronics using direct 3D printing and presents promising new design principles and materials for wearable electronics.  相似文献   

9.
Stretchable self-healing supercapacitors (SCs) can operate under extreme deformation and restore their initial properties after damage with considerably improved durability and reliability, expanding their opportunities in numerous applications, including smart wearable electronics, bioinspired devices, human–machine interactions, etc. It is challenging, however, to achieve mechanical stretchability and self-healability in energy storage technologies, wherein the key issue lies in the exploitation of ideal electrode and electrolyte materials with exceptional mechanical stretchability and self-healing ability besides conductivity. Conductive hydrogels (CHs) possess unique hierarchical porous structure, high electrical/ionic conductivity, broadly tunable physical and chemical properties through molecular design and structure regulation, holding tremendous promise for stretchable self-healing SCs. Hence, this review is innovatively constructed with a focus on stretchable and self-healing CH based electrodes and electrolytes for SCs. First, the common synthetic approaches of CHs are introduced; then the stretching and self-healing strategies involved in CHs are systematically elaborated; followed by an explanation of the conductive mechanism of CHs; then focusing on CH-based electrodes and electrolytes for stretchable self-healing SCs; subsequently, application of stretchable and self-healing SCs in wearable electronics are discussed; finally, a conclusion is drawn along with views on the challenges and future research directions regarding the field of CHs for SCs.  相似文献   

10.
Artificial materials with biomimic self-healing ability are fascinating, however, the balance between mechanical properties and self-healing performance is always a challenge. Here, a robust, highly stretchable self-healing elastomer with dynamic reversible multi-networks based on polyurethane matrix and cyclodextrin-assembled nanosheets is proposed. The introduction of cyclodextrin nano-assemblies with abundant surface hydroxyl groups not only forms multiple interfacial hydrogen bonding but also enables a strain-induced reversible crystalline physical network owing to the special nanoconfined effect. The formation and dissociation of a dynamic crystalline physical network under stretching–releasing cycles skillfully balance the contradiction between mechanical robustness and self-healing ability. The resulting nanocomposites exhibit ultra-robust tensile strength (40.5 MPa), super toughness (274.7 MJ m−3), high stretchability (1696%), and desired healing efficiency (95.5%), which can lift a weight ≈ 100 000 times their own weight. This study provides a new approach to the development of mechanically robust self-healing materials for engineering applications such as artificial muscles and healable robots.  相似文献   

11.
Developing neural electrodes with high stretchability and stable conductivity is a promising method to explore applications of them in biological medicine and electronic skin. However, considering the poor mechanical stretchability of typical conductive materials, maintaining the connection of electrode conductive paths under high stretching is still a challenge. Herein, for the first time, a double-microcrack coupling strategy for highly stretchable neural electrodes is proposed. Compared with single-layer stretchable microcrack electrodes, the design utilizes the complement between two gold microcrack films to contribute more conductive paths. It shows that the resistance change (R/R0) of the electrode under 100% strain is about 5.6 times, which is much lower than other electrodes and exhibits a high stretchability of ≈200%. Simultaneously, this design is an encapsulation-free design which avoids the electrode performance degradation caused by encapsulation. Furthermore, it is found that the adhesion strength between metal electrode and substrate is critical to the stretchability and stability of electrodes, so polydimethylsiloxane0.9-isophorone diisocyanate elastomer (PDMS0.9-IPDI), whose adhesion to gold electrode is 4.5 times higher than that of the commercial polydimethylsiloxane (PDMS), is synthesized. Finally, the electrophysiological communication between different organisms by electrodes is successfully demonstrated.  相似文献   

12.
The long application life and stable performance of stretchable electronics have been putting forward requirements for both higher mechanical properties and better self‐healing ability of polymeric substrates. However, for self‐healing materials, simultaneously improving stretchability and robustness is still challenging. Here, by incorporating sliding crosslinker (polyrotaxanes) and hydrogen bonds into a polymer, a highly stretchable and self‐healable elastomer with good mechanical strength is achieved. The elastomer exhibits very high stretchability, such that it can be stretched to 2800% with a fracture strength of 1.05 MPa. Moreover, the elastomer can achieve nearly complete self‐healing (93%) at 55 °C. Next, tensile tests under different temperatures, step extension experiments, and in situ small angle X‐ray scattering confirm that the excellent stretchability is attributed to the combined effects of sliding cyclodextrins along guest chains and hydrogen bonds. Furthermore, a strain sensor by coating the single‐wall carbon nanotubes onto the surface of the elastic substrate is fabricated.  相似文献   

13.
Soft, elastically deformable composites can enable new generations of multifunctional materials for electronics, robotics, and reconfigurable structures. Liquid metal (LM) droplets dispersed in elastomer matrices represent an emerging material architecture that has shown unique combinations of soft mechanical response with exceptional electrical and thermal functionalities. These properties are strongly dependent on the material composition and microstructure. However, approaches to control LM microdroplet morphology to program mechanical and functional properties are lacking. Here, this limitation is overcome by thermo‐mechanically shaping LM droplets in soft composites to create programmable microstructures in stress‐free materials. This enables LM loadings up to 70% by volume with prescribed particle aspect ratios and orientation, enabling control of microstructure throughout the bulk of the material. Through this microstructural control in soft composites, a material which simultaneously achieves a thermal conductivity as high as 13.0 W m?1 K?1 (>70 × increase over polymer matrix) with low modulus (<1.0 MPa) and high stretchability (>750% strain) is demonstrated in stress‐free conditions. Such properties are required in applications that demand extreme mechanical flexibility with high thermal conductivity, which is demonstrated in soft electronics, wearable robotics, and electronics integrated into 3D printed materials.  相似文献   

14.
The interfacing of soft and hard electronics is a key challenge for flexible hybrid electronics. Currently, a multisubstrate approach is employed, where soft and hard devices are fabricated or assembled on separate substrates, and bonded or interfaced using connectors; this hinders the flexibility of the device and is prone to interconnect issues. Here, a single substrate interfacing approach is reported, where soft devices, i.e., sensors, are directly printed on Kapton polyimide substrates that are widely used for fabricating flexible printed circuit boards (FPCBs). Utilizing a process flow compatible with the FPCB assembly process, a wearable sensor patch is fabricated composed of inkjet‐printed gold electrocardiography (ECG) electrodes and a stencil‐printed nickel oxide thermistor. The ECG electrodes provide 1 mVpp ECG signal at 4.7 cm electrode spacing and the thermistor is highly sensitive at normal body temperatures, and demonstrates temperature coefficient, α ≈ –5.84% K–1 and material constant, β ≈ 4330 K. This sensor platform can be extended to a more sophisticated multisensor platform where sensors fabricated using solution processable functional inks can be interfaced to hard electronics for health and performance monitoring, as well as internet of things applications.  相似文献   

15.
Mimicking the skin's non‐linear self‐limiting mechanical characteristics is of great interest. Skin is soft at low strain but becomes stiff at high strain and thereby can protect human tissues and organs from high mechanical loads. Herein, the design of a skin‐inspired substrate is reported based on a spaghetti‐like multi‐nanofiber network (SMNN) of elastic polyurethane (PU) nanofibers (NFs) sandwiched between stiff poly(vinyldenefluoride‐co‐trifluoroethylene) (P(VDF‐TrFE)) NFs layers embedded in polydimethylsiloxane elastomer. The elastic moduli of the stretchable skin‐inspired substrate can be tuned in a range that matches well with the mechanical properties of skins by adjusting the loading ratios of the two NFs. Confocal imaging under stretching indicates that PU NFs help maintain the stretchability while adding stiff P(VDF‐TrFE) NFs to control the self‐limiting characteristics. Interestingly, the Au layer on the substrate indicates a negligible change in the resistance under cyclic (up to 7000 cycles at 35% strain) and dynamic stretching (up to 35% strain), which indicates the effective absorption of stress by the SMNN. A stretchable chemoresistive gas sensor on the skin‐inspired substrate also demonstrates a reasonable stability in NO2 sensing response under strain up to 30%. The skin‐inspired substrate with SMNN provides a step toward ultrathin stretchable electronics.  相似文献   

16.
Transparent conductors for the next generation of soft electronic devices need to be highly stretchable, conductive, and transparent, while an inevitable challenge lies in enhancing them simultaneously. Cost‐effective silver nanowires (AgNWs) are widely used but the conventional random network yields a high junction resistance as well as degraded conductivity in the stretched state. Here, a novel, facile, and versatile agitation‐assisted assembly approach is reported to control the orientation direction and density of AgNWs and to layer‐by‐layer deposit the AgNWs monolayer or multilayers onto the prestrained soft substrate. This electrode demonstrates an unprecedented low sheet resistance of 2.8 Ω sq?1 as well as high transparency of 85% and high stretchability of 40%. It is interesting to note that contrary to most other reports, such a device shows higher conductivity in the stretched state compared to the released state.  相似文献   

17.
The adoption of epidermal electronics into everyday life requires new design and fabrication paradigms, transitioning away from traditional rigid, bulky electronics towards soft devices that adapt with high intimacy to the human body. Here, a new strategy is reported for fabricating achieving highly stretchable “island‐bridge” (IB) electrochemical devices based on thick‐film printing process involving merging the deterministic IB architecture with stress‐enduring composite silver (Ag) inks based on eutectic gallium‐indium particles (EGaInPs) as dynamic electrical anchors within the inside the percolated network. The fabrication of free‐standing soft Ag‐EGaInPs‐based serpentine “bridges” enables the printed microstructures to maintain mechanical and electrical properties under an extreme (≈800%) strain. Coupling these highly stretchable “bridges” with rigid multifunctional “island” electrodes allows the realization of electrochemical devices that can sustain high mechanical deformation while displaying an extremely attractive and stable electrochemical performance. The advantages and practical utility of the new printed Ag‐liquid metal‐based island‐bridge designs are discussed and illustrated using a wearable biofuel cell. Such new scalable and tunable fabrication strategy will allow to incorporate a wide range of materials into a single device towards a wide range of applications in wearable electronics.  相似文献   

18.
Liquid‐metal (LM)‐based flexible and stretchable electronics have attracted widespread interest in wearable computing, human–machine interaction, and soft robotics. However, many current examples are one‐off prototypes, whereas future implementation requires mass production. To address this critical challenge, an integrated multimaterial 3D printing process composed of direct ink writing (DIW) of sealing silicone elastomer and special LM‐silicone (LMS) inks for manufacturing high‐performance LM‐based flexible and stretchable electronics is presented. The LMS ink is a concentrated mixture of LM microdroplets and silicone elastomer and exhibits excellent printability for DIW printing. Guided by a verified theoretical model, a printing process with high resolution and high speed can be easily implemented. Although LMS is not initially conductive, it can be activated by pressing or freezing. Activated LMS possesses good conductivity and significant electrical response to strain. Owing to LMS's unique structure, LMS‐embedded flexible electronics exhibit great damage mitigation, in that no leaking occurs even when damaged. To demonstrate the flexibility of this process in fabricating LM‐based flexible electronics, multilayer soft circuits, strain sensors, and data gloves are printed and investigated. Notably, utilizing LMS's unique activating property, some functional circuits such as one‐time pressing/freezing‐on switch can be printed without any structural design.  相似文献   

19.
Flexible electronics, as an emerging and exciting research field, have brought great interest to the issue of how to make flexible electronic materials that offer both durability and high performance at strained states. With the advent of on‐body wearable and implantable electronics, as well as increasing demands for human‐friendly intelligent soft robots, enormous effort is being expended on highly flexible functional materials, especially stretchable electrodes, by both the academic and industrial communities. Among different deformation modes, stretchability is the most demanding and challenging. This review focuses on the latest advances in stretchable transparent electrodes based on a new design strategy known as kirigami (the art of paper cutting) and investigates the recent progress on novel applications, including skin‐like electronics, implantable biodegradable devices, and bioinspired soft robotics. By comparing the optoelectrical and mechanical properties of different electrode materials, some of the most important outcomes with comments on their merits and demerits are raised. Key design considerations in terms of geometries, substrates, and adhesion are also discussed, offering insights into the universal strategies for engineering stretchable electrodes regardless of the material. It is suggested that highly stretchable and biocompatible electrodes will greatly boost the development of next‐generation intelligent life‐like electronics.  相似文献   

20.
Coordination complexes are widely used to tune the mechanical behaviors of polymer materials, including tensile strength, stretchability, self-healing, and toughness. However, integrating multivalent functions into one material system via solely coordination complexes is challenging, even using combinations of metal ions and polymer ligands. Herein, a single-step process is described using silver-based coordination complexes as cross-linkers to enable high compressibility (>85%). The resultant organogel displays a high compressive strength (>1 MPa) with a low energy loss coefficient (<0.1 at 50% strain). Remarkably, it demonstrates an instant self-recovery at room temperature with a speed >1200 mm s−1, potentially being utilized for designing high-frequency-responsive soft materials (>100 Hz). Importantly, in situ silver nanoparticles are formed, effectively endowing the organogel with high conductivity (550 S cm−1). Given the synthetic simplification to achieve multi-valued properties in a single material system using metal-based coordination complexes, such organogels hold significant potential for wearable electronics, tissue-device interfaces, and soft robot applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号