首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Microcapsules with regulated transmembrane transport are of great importance for various applications. The membranes with a tunable cut-off threshold of permeation provide advanced functionality. Here, thermo-responsive microcapsules are designed, whose hydrogel membrane shows a tunable cut-off threshold of permeation with temperature. To produce the microcapsules, water-in-oil-in-water (W/O/W) double-emulsion droplets are microfluidically produced, whose oil shell contains oil-soluble hydrogel precursor of poly(N, N-diethylacrylamide) copolymerized with benzophenone (PDEAM-BP). The PDEAM hydrogels, crosslinked by BP, show volume-phase transition around 34 °C, which makes the microcapsules with the PDEAM hydrogel membrane thermo-responsive. The microcapsules show temperature-dependent changes in radius and membrane thickness. More importantly, the cut-off threshold of permeation can be reversibly adjusted by temperature control as the degree of swelling decreases with temperature. This enables the molecule-selective encapsulation and the controlled release of the encapsulants in a programmed manner by adjusting the temperature. The microcapsules can be rendered to be photo-responsive by encapsulating photothermal polydopamine nanoparticles during the microfluidic operation, which allows the control of the degree of swelling with near-infrared (NIR) irradiation. The thermo- and photo-responsive microcapsules with a tunable cut-off threshold are appealing as a new platform for drug carriers, microreactors, and microsensors.  相似文献   

2.
A hydrogel microcapsule with an intermediate thin oil layer is presented to achieve smart release of a broad range of cargoes triggered via diverse stimuli. A microfluidic technique is used to produce triple emulsion droplets with a thin oil layer that separates the innermost aqueous phase from the hydrogel prepolymer phase, which transforms into a hydrogel shell via photopolymerization. The intermediate oil layer within the hydrogel microcapsule acts as an effective diffusion barrier, allowing encapsulation of various small cargoes within a porous hydrogel shell until a stimulus is applied to destabilize the oil layer. It is demonstrated that diverse stimuli including chemical dissolution, mechanical stress, and osmotic pressure can be utilized to release the encapsulated cargo on-demand. In addition, osmotic pressure and the hydrogel shell thickness can be independently tuned to control the onset time of release as well as the release behavior of multi-cargo encapsulated hydrogel microcapsule. The release can be either simultaneous or selective.  相似文献   

3.
Developing sponge materials integrating excellent flame retardancy, multitasking separation performance, and efficient emulsion‐breaking ability is significant but challenging for the remediation of oil spills causing fires and environmental damages. Herein, a superhydrophobic oil–water separation sponge material, containing a melamine‐formaldehyde (MF) sponge substrate, magnetic polydopamine (PDA) coating, and branched polydimethylsiloxane (PDMS) brush, through dopamine‐mediated surface initiated atom transfer radical polymerization (SI‐ATRP) is fabricated. The synergistic flame resistance of the MF substrate and PDMS brush significantly improves its adaptability in fire. More importantly, the decorated PDMS brushes can effectively overcome the size mismatch between sponge macropores and tiny emulsified droplets, while remaining the intrinsic macroporous characteristic. When treating W/O emulsions, the PDMS brushes stretch up to act as “interface‐breaking blades” to accelerate the coalescence of emulsified water droplets. Meanwhile, such PDMS brushes can serve as “oil‐trapping tentacles” to efficiently capture oil droplets when treating O/W emulsions. Such material design synergistically contributes to satisfactory separation efficiency (98.7%) and ultrahigh permeation flux (up to 1.35 × 105 L m?2 h?1), even for treating high viscosity emulsions. Besides, the reported sponge also inherits robust durability, superior recyclability, and convenient magnetic collection. These features make the sponge promising for multitasking and highly efficient oil–water separation.  相似文献   

4.
In this study, a single‐step microfluidic approach is reported for encapsulation of enzymes within microcapsules with ultrathin polymeric shell for controlled release triggered by an osmotic shock. Using a glass capillary microfluidic device, monodisperse water‐in‐oil‐in‐water double emulsion droplets are fabricated with enzymes in the core and an ultrathin middle oil layer that solidifies to produce a consolidated inert polymeric shell with a thickness of a few tens to hundreds of nanometers. Through careful design of microcapsule membranes, a high percentage of cargo release, over 90%, is achieved, which is triggered by osmotic shock when using poly(methyl methacrylate) as the shell material. Moreover, it is demonstrated that compared to free enzymes, the encapsulated enzyme activity is maintained well for as long as 47 days at room temperature. This study not only extends industrial applications of enzymes, but also offers new opportunities for encapsulation of a wide range of sensitive molecules and biomolecules that can be controllably released upon applying osmotic shock.  相似文献   

5.
Metal nanoparticles are frequently employed for the colorimetric detection of specific target molecules using an aggregation‐induced shift of the localized surface plasmon resonance. However, metal nanoparticles dispersed in bulk solutions are prone to be contaminated by adhesive molecules and the dispersions tend to be diluted by sample fluids, restricting direct application to unpurified pristine samples. Here, a versatile capsule sensor platform is proposed that can encompass a variety of different types of nanoparticle‐based sensors. The capsule sensors are microfluidically prepared to obtain close control over their dimensions and composition. Their aqueous cores that are loaded with sensing materials are surrounded by an ultrathin inner oil shell and an outer hydrogel shell. The hydrogel shell prevents the diffusion of large adhesive molecules into the core, thereby preventing contamination of the sensing materials. The oil shell is selectively permeable such that it further improves the sensor selectivity. Importantly, these shells confine the sensing materials and prevent them from being diluted, securing a consistent optical property. Moreover, the capsule‐based sensors display a higher sensitivity than bulk dispersions because a smaller amount of sensing materials is used. The power of nanoparticle‐loaded capsule sensors is demonstrated using lysine‐coated gold nanoparticles to detect mercury ions.  相似文献   

6.
Poly(D ,L ‐lactide‐co‐glycolide) (PLGA) microbeads with a hollow interior and porous wall are prepared using a simple fluidic device fabricated with PVC tubes, glass capillaries, and a needle. Using the fluidic device with three flow channels, uniform water‐in‐oil‐in‐water (W‐O‐W) emulsions with a single inner water droplet can be achieved with controllable dimensions by varying the flow rate of each phase. The resultant W‐O‐W emulsions evolve into PLGA microbeads with a hollow interior and porous wall after the organic solvent in the middle oil phase evaporates. Two approaches are employed for developing a porous structure in the wall: emulsion templating and fast solvent evaporation. For emulsion templating, a homogenized, water‐in‐oil (W/O) emulsion is introduced as the middle phase instead of the pure oil phase. Low‐molecular‐weight fluorescein isothiocyanate (FITC) and high‐molecular‐weight fluorescein isothiocyanate–dextran conjugate (FITC–DEX) is added to the inner water phase to elucidate both the pore size and their interconnectivity in the wall of the microbeads. From optical fluorescence microscopy and scanning electron microscopy images, it is confirmed that the emulsion‐templated microbeads (W‐W/O‐W) have larger and better interconnected pores than the W‐O‐W microbeads. These microstructured microbeads can potentially be employed for cell encapsulation and tissue engineering, as well as protection of active agents.  相似文献   

7.
A novel approach for encapsulation of hydrophobic materials into hydrophilic multifunctional shells is based on combining ultrasonic techniques and layer‐by‐layer protocols. Polyglutamate/polyelectrolyte nanocontainers of 600 nm size loaded with hydrophobic tetraphenylporphin are fabricated in work reported by Dmitri Shchukin and co‐workers on p. 1273. The hydrophobic core of the nanocontainers can encapsulate a huge variety of water‐insoluble drugs and the outer hydrophilic polyelectrolyte shell has controlled permeability and multifunctionality. A novel approach for encapsulation of hydrophobic materials into a hydrophilic multifunctional shell is presented, based on combining an ultrasonic technique and a layer‐by‐layer protocol. Polyglutamate/polyethyleneimine (PEI)/polyacrylic acid (PAA) and polyglutamate/PEI/PAA/silver nanocontainers loaded with a hydrophobic dye, 5,10,15,20‐tetraphenylporphin, dissolved in toluene, are fabricated. Uniform, stable, and monodisperse polyglutamate/PEI/PAA nanocontainers of about 600 nm are obtained. The hydrophobic core of the nanocontainers might contain a huge variety of water‐insoluble drugs and the outer polyelectrolyte shell may provide controlled permeability and desired multifunctionality. Confocal fluorescence microscopy and scanning electron microscopy are employed for the characterization of the resulting nanocontainers. Using sodium dodecyl sulfate as surfactant, the amount of nanocontainers, their monodispersity, and stability can be increased dramatically.  相似文献   

8.
Realizing ultrathin water and generating an abundant water/air interface in the interconnected pores of photothermal materials is an effective way to boost the solar-driven water evaporation rate, but still a great challenge. Herein, confinement capillarity (CC) of photothermal thin coating on porous sponge for significantly enhancing the solar-driven water evaporation is proposed. The thin coating is composed of abundant agminated black/hydrophilic nanoparticles (BHNPs), and the channels among the BHNPs can generate strong capillarity for water transportation. Water can be spontaneously limited and transported among the agminated nanoparticles, rather than fill in the interconnected pores of the sponge. Thus, ultrathin water layer can be realized on the outer/inner surface of the sponge skeleton, without precisely controlling water supply. The thin water layer can not only expose as much evaporation area as possible by increasing the vapor escape channel, but also prevent solar energy to heat excess water. Thanks to the CC, the rate of solar steam generation can be greatly improved. Moreover, the photothermal material with CC can maintain its high evaporation rate during the whole day, and can remove the salt during night time, highlighting its recyclability and anti-salt-accumulation property. Moreover, the CC can be readily scaled up for practical applications.  相似文献   

9.
Micrometer‐scale liquid crystal network (LCN) actuators have potential for application areas like biomedical systems, soft robotics, and microfluidics. To fully harness their power, a diversification in production methods is called for, targeting unconventional shapes and complex actuation modes. Crucial for controlling LCN actuation is the combination of macroscopic shape and molecular‐scale alignment in the ground state, the latter becoming particularly challenging when the desired shape is more complex than a flat sheet. Here, one‐step processing of an LCN precursor material in a glass capillary microfluidic set‐up to mold it into thin shells is used, which are stretched by osmosis to reach a diameter of a few hundred micrometers and thickness on the order of a micrometer, before they are UV crosslinked into an LCN. The shells exhibit radial alignment of the director field and the surface is porous, with pore size that is tunable via the osmosis time. The LCN shells actuate reversibly upon heating and cooling. The decrease in order parameter upon heating induces a reduction in thickness and expansion of surface area of the shells that triggers continuous buckling in multiple locations. Such buckling porous shells are interesting as soft cargo carriers with capacity for autonomous cargo release.  相似文献   

10.
11.
There are increasing requirements for highly efficient and solvent‐resistant nanoporous membranes in various separation processes. Traditional membranes usually have a poor solvent resistance and a thick skin layer leading to a low permeation flux. Currently, the major challenge lies in fabrication of ultrathin few‐nanometers‐pore membranes for fast organic filtration. Herein, a facile approach is presented to prepare ultrafine cellulose nanofibers for fabrication of ultrathin nanoporous membranes. The obtained nanofibers have a uniform diameter of 7.5 ± 2.5 nm and are homogeneously dispersed in aqueous solutions that are favorable to the fabrication of ultrathin nanoporous membranes. The resulting cellulose nanoporous membranes have an adjustable thickness down to 23 nm and pore sizes ranging from 2.5 to 12 nm. They allow fast permeation of water and organics during pressure‐driven filtration. Typically, the 30 nm thick membrane has high fluxes of 1.14 and 3.96 × 104 L h?1 m?2 bar?1 for pure water and acetone respectively. Furthermore, the as‐prepared cellulose nanofibers are easily employed to produce a novel syringe filter with sub‐10 nm pores that have a wide application in fast separation and purification of nanoparticles on few‐nanometers scale.  相似文献   

12.
Liquid metals offer unprecedented chemistry. Here it is shown that they can facilitate self‐limiting oxidation processes on their surfaces, which enables the growth of metal oxides that are atomically thin. This claim is exemplified by creating atomically thin hydrated MnO2 using a Galvanic replacement reaction between permanganate ions and a liquid gallium–indium alloy (EGaIn). The “liquid solution”–“liquid metal” process leads to the reduction of the permanganate ions, resulting in the formation of the oxide monolayer at the interface. It is presented that under mechanical agitation liquid metal droplets are established, and simultaneously, hydrated gallium oxides and manganese oxide sheets delaminate themselves from the interfacial boundaries. The produced nanosheets encapsulate a metallic core, which is found to consist of solid indium only, with the full migration of gallium out of the droplets. This process produces core/shell structures, where the shells are made of stacked atomically thin nanosheets. The obtained core/shell structures are found to be an efficient photocatalyst for the degradation of an organic dye under simulated solar irradiation. This study presents a new research direction toward the modification and functionalization of liquid metals through spontaneous interfacial redox reactions, which has implications for many applications beyond photocatalysis.  相似文献   

13.
A novel interfacially active and magnetically responsive nanoparticle is designed and prepared by direct grafting of bromoesterified ethyl cellulose (EC‐Br) onto the surface of amino‐functionalized magnetite (Fe3O4) nanoparticles. Due to its strong interfacial activity, ethyl cellulose (EC) on the magnetic nanoparticles enables the EC‐grafted Fe3O4 (M‐EC) nanoparticles to be interfacially active. The grafting of interfacially active polymer EC on magnetic nanoparticles is confirmed by zeta‐potential measurements, diffuse reflectance infrared Fourier‐transform spectroscopic (DRIFTS) characterization, and thermogravimetric analysis (TGA). Scanning electron microscopy (SEM) images show a negligible increase in particle size, confirming the thin silica coating and grafted EC layer. The magnetization measurements show a marginal reduction in saturation magnetization by silica coating and EC grafting of original magnetic nanoparticles, confirming the presence of coatings. The M‐EC nanoparticles prepared in this study show excellent interfacial activity and highly ordered features at the oil/water interface, as confirmed using the Langmuir–Blodgett technique and atomic force microscopy (AFM). The magnetic properties of M‐EC nanoparticles at the oil/water interface make the interfacial properties tunable by or responsive to an external magnetic field. The occupancy of M‐EC at the oil/water interface allows rapid separation of the water droplets from emulsions by an external magnetic field, demonstrating enhanced coalescence of magnetically tagged stable water droplets and a reduced overall volume fraction of the sludge.  相似文献   

14.
Graphene oxide (GO) laminates possess unprecedented fast water‐transport channels. However, how to fully utilize these unique channels in order to maximize the separation properties of GO laminates remains a challenge. Here, a bio‐inspired membrane that couples an ultrathin surface water‐capturing polymeric layer (<10 nm) and GO laminates is designed. The proposed synergistic effect of highly enhanced water sorption from the polymeric layer and molecular channels from the GO laminates realizes fast and selective water transport through the integrated membrane. The prepared membrane exhibits highly selective water permeation with an excellent water flux of over 10 000 g m?2 h?1, which exceeds the performance upper bound of state‐of‐the‐art membranes for butanol dehydration. This bio‐inspired strategy demonstrated here opens the door to explore fast and selective channels derived from 2D or 3D materials for highly efficient molecular separation.  相似文献   

15.
This study presents a method for the fabrication of solvent‐resistant poly(dimethylsiloxane) (PDMS) microfluidic devices by coating the microfluidic channel with a hybrid inorganic/organic polymer (HR4). This modification dramatically increases the resistance of PDMS microfluidic channels to various solvents, because it leads to a significant reduction in the rate of solvent absorption and consequent swelling. The compatibility of modified PDMS with a wide range of solvents is investigated by evaluating the swelling ratio measured through weight changes in a standard block. The HR4‐modified PDMS microfluidic device can be applied to the formation of water‐in‐oil (W/O) and oil‐in‐water (O/W) emulsions. The generation of organic solvent droplets with high monodispersity in the microfluidic device without swelling problems is demonstrated. The advantage of this proposed method is that it can be used to rapidly fabricate microfluidic devices using the bulk properties of PDMS, while also increasing their resistance to various organic solvents. This high compatibility with a variety of solvents of HR4‐modified PDMS can expand the application of microfluidic systems to many research fields.  相似文献   

16.
The crystallization of nanometer‐scale materials during high‐temperature calcination can be controlled by a thin layer of surface coating. Here, a novel silica‐protected calcination process for preparing mesoporous hollow TiO2 nanostructures with a high surface area and a controllable crystallinity is presented. This method involves the preparation of uniform silica colloidal templates, sequential deposition of TiO2 and then SiO2 layers through sol–gel processes, calcination to transform amorphous TiO2 to crystalline anatase, and finally etching of the inner and outer silica to produce mesoporous anatase TiO2 shells. The silica‐protected calcination step allows crystallization of the amorphous TiO2 layer into anatase nanocrystals, while simultaneously limiting the growth of anatase grains to within several nanometers, eventually producing mesoporous anatase shells with a high surface area (~311 m2 g?1) and good water dispersibility upon chemical etching of the silica. When used as photocatalysts for the degradation of Rhodamine B under UV irradiation, the as‐synthesized mesoporous anatase shells show significantly enhanced photocatalytic activity with greater enhancement for samples calcined at higher temperatures thanks to their improved crystallinity.  相似文献   

17.
Thin film composite (TFC) membranes have attracted great research interest for a wide range of separation processes owing to their potential to achieve excellent permeance. However, it still remains challenging to fully exploit the superiority of thin selective layers when mitigating the pore intrusion phenomenon. Herein, a facile and generic interface‐decoration‐layer strategy collaborating with molecular‐scale organic–inorganic hybridization in the selective layer to obtain a high‐performance ultrathin film composite (UTFC) membrane for CO2 capture is reported. The interface‐decoration layer of copper hydroxide nanofibers (CHNs) enables the formation of an ultrathin selective layer (≈100 nm), achieving a 2.5‐fold increase in gas permeance. The organic part in the molecular‐scale hybrid material contributes to facilitating CO2‐selective adsorption while the inorganic part assists in maintaining robust membrane structure, thus remarkably improving the selectivity toward CO2. As a result, the as‐prepared membrane shows a high CO2 permeance of 2860 GPU, superior to state‐of‐the‐art polymer membranes, with a CO2/N2 selectivity of 28.2. The synergistic strategy proposed here can be extended to a wide range of polymers, holding great potential to produce high‐efficiency ultrathin membranes for molecular separation.  相似文献   

18.
核/壳结构ZnS:Mn/ZnS量子点光发射增强研究   总被引:1,自引:1,他引:0  
利用水溶性前驱体材料在水性介质中制备了ZnS:Mn和ZnS:Mn/ZnS核/壳结构量子点(QDs,quantum dots),并用X射线衍射(XRD)、光致发光(PL)对ZnS:Mn和ZnS:Mn/ZnS核/壳结构QDs的结构和发光性能进行研究.ZnS:Mn和ZnS:Mn/ZnS QDs XRD谱与标准谱吻合,根据De...  相似文献   

19.
Membrane‐based processes, namely, water purification and harvesting of osmotic power deriving from the difference in salinity between seawater and freshwater are two strategic research fields holding great promise for overcoming critical global issues such as the world growing energy demand, climate change, and access to clean water. Ultrathin membranes based on 2D materials (2DMs) are particularly suitable for highly selective separation of ions and effective generation of blue energy because of their unique physicochemical properties and novel transport mechanisms occurring at the nano‐ and sub‐nanometer length scale. However, due to the relatively high costs of fabrication compared to traditional porous membrane materials, their technological transfer toward large‐scale applications still remains a great challenge. Herein, the authors present an overview of the current state‐of‐the‐art in the development of ultrathin membranes based on 2DMs for osmotic power generation and water purification. The authors discuss several synthetic routes to produce atomically thin membranes with controlled porosity and describe in detail their performance, with a particular emphasis on pressure‐retarded osmosis and reversed electrodialysis methods. In the last section, an outlook and current limitations as well as viable future developments in the field of 2DM membranes are provided.  相似文献   

20.
利用溶胶-凝胶法制备了Mg0.3Zn0.7O薄膜,并制作了金属-半导体-金属结构的深紫外探测器.研究了高质量ZnO缓冲层的引入对Mg0.3Zn0.7O薄膜的吸收谱和结晶特性以及Mg0.3Zn0.7O紫外探测器响应参数的影响.实验结果表明:ZnO缓冲层的引入使Mg0.3Zn0.7O薄膜的紫外-可见光吸收谱有轻微的红移,但可以明显提高薄膜的结晶质量,同时ZnO/Mg0.3Zn0.7O探测器的I-V特性表明,ZnO缓冲层的引入可以显著提高器件的光电流,改善其响应特性,在20V偏压下将Mg0.3Zn0.7O探测器的响应度由0.035 A/W提高至0.63 A/W.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号