首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 2 毫秒
1.
This paper reports β‐lactoglobulin amyloid protein fibrils directed synthesis of Titanium Dioxide (TiO2) hybrid nanowires. Protein fibrils act as templates to generate closely packed TiO2 nanoparticles on the surface of the fibrils using titanium (IV) bis (ammonium lactato) dihydroxide (TiBALDH) as precursor, resulting in the TiO2–coated amyloid hybrid nanowires. These amyloid fibrils also exhibit complexation with a luminescent water‐soluble semiconductive polythiophene (P3HT). TiO2 nanowires behave as electron acceptor while, P3HT as electron donor. In this way, amyloid‐TiO2 hybrid nanowires can serve in heterojunction photovoltaic devices. To demonstrate this, a photovoltaic active layer is prepared by spin coating the blended mixture of polythiophene‐coated fibrils and amyloid‐TiO2 hybrid nanowires. The current–voltage characteristics of these photovoltaic devices exhibit excellent fill factor of 0.53, photovoltaic current density of 3.97 mA·cm?2 and power conversion efficiency of 0.72%, highlighting a possible future role for amyloid‐based templates in donor–acceptor devices, organic electronics and hybrid solar cells.  相似文献   

2.
Nanomedicines that inhibit/disassemble amyloid β (Aβ) aggregates in Alzheimer's disease (AD) are highly desirable yet remain challenging. Therapeutic efficacy and systemic delivery of reported molecules and nanoparticles (NPs) are hampered by various challenges, including low biocompatibility, off‐target toxicity, and lack of specificity. Herein, a versatile NP is designed by integrating high Aβ‐binding affinity, stimuli‐responsive drug release, and photothermal degradation properties for efficient disassembly of Aβ. Near‐infrared (NIR)‐absorbing conjugated polymer PDPP3T‐O14 serves as a photothermal core while thermal‐responsive polymer 1,2‐dipalmitoyl‐sn‐glycero‐3‐phosphocholine at the outer layer as the NIR‐stimuli gatekeeper. Curcumin, an inhibitor of Aβ aggregation, is loaded into the NP with high encapsulation efficiency. The 5‐mer β‐sheet breaker peptides LPFFD (Leu‐Pro‐Phe‐Phe‐Asp) having high binding affinity toward Aβ are further anchored onto the surface of polyethylene glycol‐lipid shell for active Aβ‐targeting. The resultant NPs exhibit good Aβ‐targeting ability and obvious photothermal dissociation effect together with Aβ aggregation‐dependent fluorescence detection capability. Upon NIR laser irradiation, entrapped curcumin can be effectively released from the unconsolidated NPs to enhance the anti‐amyloid activity. In vitro studies demonstrate that the NPs dramatically lower Aβ‐induced cytotoxicity of PC12 cells, and therefore show great potential for the application in AD treatment.  相似文献   

3.
To tackle the increasingly complex electromagnetic (EM) pollution environment, the application-oriented electromagnetic wave (EMW) absorption materials with ultra-thin, light weight and strong tolerance to harsh environment are urgently explored. Although graphene aerogel-based lightweight EMW absorbers have been developed, thinner thickness and more effective polarization loss strategies are still essential. Based on the theory of EMW transmission, this work innovatively proposes a high attenuation design strategy for obtaining ultra-thin EMW absorption materials, cobalt selenide (CoSe2) is determined as animportant part of ultra-thin absorbers. In order to obtain a dielectric parameter range that satisfies the ultra-thin absorption characteristics and improve the lightweight properties of EMW absorption materials, a composite of CoSe2 modified N-doped reduced graphene oxide (N-RGO/CoSe2) is designed. Meanwhile, the controllable introduction of defect engineering into RGO can activate Schottky heterointerfaces of composites to generate a strong interfacial polarization effect, achieving ultra-thin characteristics while significantly improving the EM loss capability. In addition, infrared thermal images and anti-icing experiments show that the composite has good corrosion resistance, infrared stealth, and thermal insulation properties. Therefore, this work provides an effective strategy for obtaining thin-thickness, light-weight, and high-performance EMW absorption materials, embodying the advantages of N-RGO/CoSe2 composites in practical applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号