首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Semiconductive transition metal dichalcogenides (TMDs) have been considered as next generation semiconductors, but to date most device investigations are still based on microscale exfoliation with a low yield. Wafer scale growth of TMDs has been reported but effective doping approaches remain challenging due to their atomically thick nature. This work reports the synthesis of wafer‐scale continuous few‐layer PtSe2 films with effective doping in a controllable manner. Chemical component analyses confirm that both n‐doping and p‐doping can be effectively modulated through a controlled selenization process. The electrical properties of PtSe2 films have been systematically studied by fabricating top‐gated field effect transistors (FETs). The device current on/off ratio is optimized in two‐layer PtSe2 FETs, and four‐terminal configuration displays a reasonably high effective field effect mobility (14 and 15 cm2 V?1 s?1 for p‐type and n‐type FETs, respectively) with a nearly symmetric p‐type and n‐type performance. Temperature dependent measurement reveals that the variable range hopping is dominant at low temperatures. To further establish feasible application based on controllable doping of PtSe2, a logic inverter and vertically stacked p–n junction arrays are demonstrated. These results validate that PtSe2 is a promising candidate among the family of TMDs for future functional electronic applications.  相似文献   

2.
Nanoporous graphene (NPG) can exhibit a uniform electronic band gap and rationally-engineered emergent electronic properties, promising for electronic devices such as field-effect transistors (FETs), when synthesized with atomic precision. Bottom-up, on-surface synthetic approaches developed for graphene nanoribbons (GNRs) now provide the necessary atomic precision in NPG formation to access these desirable properties. However, the potential of bottom-up synthesized NPG for electronic devices has remained largely unexplored to date. Here, FETs based on bottom-up synthesized chevron-type NPG (C-NPG), consisting of ordered arrays of nanopores defined by laterally connected chevron GNRs, are demonstrated. C-NPG FETs show excellent switching performance with on–off ratios exceeding 104, which are tightly linked to the structural quality of C-NPG. The devices operate as p-type transistors in the air, while n-type transport is observed when measured under vacuum, which is associated with reversible adsorption of gases or moisture. Theoretical analysis of charge transport in C-NPG is also performed through electronic structure and transport calculations, which reveal strong conductance anisotropy effects in C-NPG. The present study provides important insights into the design of high-performance graphene-based electronic devices where ballistic conductance and conduction anisotropy are achieved, which could be used in logic applications, and ultra-sensitive sensors for chemical or biological detection.  相似文献   

3.
Two-dimensional (2D) MoS2 field-effect transistors (FETs) have attracted many attentions due to their intriguing electronic, optical, and mechanical properties. In this work, the electrical properties of multilayer MoS2 FETs are significantly enhanced by using water-soluble polyvinyl alcohol (PVA) polymer as the capping layer. The key parameter, field-effect mobilities (μ), can be increased from 0.28 cm2/Vs to 269.2 cm2/Vs after applying the PVA capping layer, which means it has almost three orders of magnitudes increase. An energy band diagram based on Schottky barrier modulation is proposed to understand the device mechanism. The results represent a significant step towards applications of 2D MoS2 FETs for future integrated circuit, sensors, and flexible electronics.  相似文献   

4.
C60 and picene thin film field-effect transistors (FETs) in bottom contact structure have been fabricated with poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS) electrodes for a realization of mechanical flexible organic FETs. The C60 thin film FETs showed n-channel enhancement-type characteristics with the field-effect mobility μ value of 0.41 cm2 V?1 s?1, while the picene thin film FET showed p-channel enhancement-type characteristics with the μ of 0.61 cm2 V?1 s?1. The μ values recorded for C60 and picene thin film FETs are comparable to those for C60 and picene thin film FETs with Au electrodes.  相似文献   

5.
InAs/AlGaAsSb deep quantum well was successfully formed on GaAs substrate and examined for two electron devices, Hall elements (HEs), and field-effect transistors (FETs). With a thin buffer layer of 600 nm AIGaAsSb on GaAs substrate, we observed high electron mobility more than 23000 cm2/Vs and extrinsic effective electron velocity of 2.2 x 107 cm/s for a 15 nm thick InAs channel at room temperature. AIGaAsSb lattice matched to InAs was discussed from the view points of insulating property, carrier confinement, and oxidization rate. Reliability data good enough for practical use were also obtained for HEs. We demonstrated AIGaAsSb as a promising buffer/barrier layers for InAs channel devices on GaAs substrate, and we discussed the possible advantages of AIGaAsSb also for InGaAs FETs.  相似文献   

6.
Group‐10 layered transitional metal dichalcogenides including PtS2, PtSe2, and PtTe2 are excellent potential candidates for optoelectronic devices due to their unique properties such as high carrier mobility, tunable bandgap, stability, and flexibility. Large‐area platinum diselenide (PtSe2) with semiconducting characteristics is far scarcely investigated. Here, the development of a high‐performance photodetector based on vertically aligned PtSe2‐GaAs heterojunction which exhibits a broadband sensitivity from deep ultraviolet to near‐infrared light, with peak sensitivity from 650 to 810 nm, is reported. The Ilight/Idark ratio and responsivity of photodetector are 3 × 104 and 262 mA W?1 measured at 808 nm under zero bias voltage. The response speed of τrf is 5.5/6.5 µs, which represents the best result achieved for Group‐10 TMDs based optoelectronic device thus far. According to first‐principle density functional theory, the broad photoresponse ranging from visible to near‐infrared region is associated with the semiconducting characteristics of PtSe2 which has interstitial Se atoms within the PtSe2 layers. It is also revealed that the PtSe2/GaAs photodetector does not exhibit performance degradation after six weeks in air. The generality of the above good results suggests that the vertically aligned PtSe2 is an ideal material for high‐performance optoelectronic systems in the future.  相似文献   

7.
The development of solution‐processed field effect transistors (FETs) based on organic and hybrid materials over the past two decades has demonstrated the incredible potential in these technologies. However, solution processed FETs generally require impracticably high voltages to switch on and off, which precludes their application in low‐power devices and prevent their integration with standard logic circuitry. Here, a universal and environmentally benign solution‐processing method for the preparation of Ta2O5, HfO2 and ZrO2 amorphous dielectric thin films is demonstrated. High mobility CdS FETs are fabricated on such high‐κ dielectric substrates entirely via solution‐processing. The highest mobility, 2.97 cm2 V?1 s?1 is achieved in the device with Ta2O5 dielectric with a low threshold voltage of 1.00 V, which is higher than the mobility of the reference CdS FET with SiO2 dielectric with an order of magnitude decrease in threshold voltage as well. Because these FETs can be operated at less than 5 V, they may potentially be integrated with existing logic and display circuitry without significant signal amplification. This report demonstrates high‐mobility FETs using solution‐processed Ta2O5 dielectrics with drastically reduced power consumption; ≈95% reduction compared to that of the device with a conventional SiO2 gate dielectric.  相似文献   

8.
Herein, we investigate the effects of the solvents used in the passivation process on the behavior of pentacene field-effect transistors (FETs) and report on the fabrication of a passivation layer for pentacene FETs via inkjet-printing using photocrosslinkable poly(vinyl alcohol), N-methyl-4(4′formylstyryl) pyridinium methosulfate acetal (SbQ-PVA). The passivated pentacene FETs – composed of inkjet-printed SbQ-PVA containing polystyrene/SiO2 and poly(4-vinyl phenol)/SiO2 dual-layer gate dielectrics – retain their electrical properties for much longer periods than the unpassivated devices. Studies of the device performance show that inkjet-printed passivation is better than spin-coated passivation.  相似文献   

9.
Platinum diselenide (PtSe2) field-effect transistors with ultrathin channel regions exhibit p-type electrical conductivity that is sensitive to temperature and environmental pressure. Exposure to a supercontinuum white light source reveals that positive and negative photoconductivity coexists in the same device. The dominance of one type of photoconductivity over the other is controlled by environmental pressure. Indeed, positive photoconductivity observed in high vacuum converts to negative photoconductivity when the pressure is raised. Density functional theory calculations confirm that physisorbed oxygen molecules on the PtSe2 surface act as acceptors. The desorption of oxygen molecules from the surface, caused by light irradiation, leads to decreased carrier concentration in the channel conductivity. The understanding of the charge transfer occurring between the physisorbed oxygen molecules and the PtSe2 film provides an effective route for modulating the density of carriers and the optical properties of the material.  相似文献   

10.
Even though atomically thin 2D semiconductors have shown great potential for next-generation electronics, the low carrier mobility caused by poor metal–semiconductor contacts and the inherently high density of impurity scatterings remains a critical issue. Herein, high-mobility field-effect transistors (FETs) by introducing few-layer PdSe2 flakes as channels is achieved, via directly depositing semimetal antimony (Sb) as drain–source electrodes. The formation of clean and defect-free van der Waals (vdW) stackings at the Sb–PdSe2 heterointerfaces boosts the room temperature transport characteristics, including low contact resistance down to 0.55 kΩ µm, high on-current density reaching 96 µA µm−1, and high electron mobility of 383 cm2 V−1 s−1. Furthermore, metal–insulator transition (MIT) is observed in the PdSe2 FETs with and without hexagonal boron nitride (h–BN) as buffer layers. However, the layered h–BN/PdSe2 vdW stacking eliminates the interference of interfacial disorders, and thus the corresponding device exhibits a lower MIT crossing point, larger mobility exponent of γ ∼ 1.73, significantly decreased hopping parameter of T0, and ultrahigh electron mobility of 2,184 cm2 V−1 s−1 at 10 K. These findings are expected to be significant for developing high mobility 2D-based quantum devices.  相似文献   

11.
Ambipolar field-effect transistors (FETs) based on solution-processed organic-inorganic bilayer structures were investigated. An amorphous indium oxide (InOx) film, as the n-type semiconducting layer, was prepared with an environmentally friendly method and annealed at a low temperature; and a low band-gap (LBG) donor–acceptor (D–A) conjugated polymer, FBT-Th4(1,4), was spin-coated on the InOx film as the p-type semiconducting layer. To improve the p-type mobility, a self-assembled monolayer (SAM) of octadecyl-phosphonic acid was introduced to modify the surface of InOx. The ambipolar FETs showed high and well-balanced hole and electron mobilities of 1.1 and 1.5 cm2 V−1 s−1, respectively. Furthermore we found that ambipolar FETs could be integrated into functional complementary metal oxide semiconductor (CMOS)-like inverters.  相似文献   

12.
Polarization-engineered Ga-face GaN-based heterostructures with a GaN cap layer and an AlGaN/p-GaN back barrier have been designed for normally-off field-effect transistors (FETs). The simulation results show that an unintentionally doped GaN cap and p-GaN layer in the buffer primarily deplete electrons in the channel and the Al0.2Ga0.8N back barrier helps to pinch off the channel. Experimentally, we have demonstrated a normally-off GaN-based field-effect transistor on the designed GaN cap/Al0.3Ga0.7N/GaN channel/Al0.2Ga0.8N/p-GaN/GaN heterostructure. A positive threshold voltage of 0.2 V and maximum transconductance of 2.6 mS/mm were achieved for 80-μm-long gate devices. The device fabrication process does not require a dry etching process for gate recessing, while highly selective etching of the GaN cap against a very thin Al0.3GaN0.7N top barrier has to be performed to create a two-dimensional electron gas for both the ohmic and access regions. A self-aligned, selective etch of the GaN cap in the access region is introduced, using the gate metal as an etch mask. The absence of gate recess etching is promising for uniform and repeatable threshold voltage control in normally-off AlGaN/GaN heterostructure FETs for power switching applications.  相似文献   

13.
2D semiconductors have shown great potentials for ultra-short channel field-effect transistors (FETs) in next-generation electronics. However, because of intractable surface states and interface barriers, it is challenging to realize high-quality contacts with low contact resistances for both p- and n- 2D FETs. Here, a graphene-enhanced van der Waals (vdWs) integration approach is demonstrated, which is a multi-scale (nanometer to centimeter scale) and reliable (≈100% yield) metal transfer strategy applicable to various metals and 2D semiconductors. Scanning transmission electron microscopy imaging shows that 2D/2D/3D semiconductor/graphene/metal interfaces are atomically flat, ultraclean, and defect-free. First principles calculations indicate that the sandwiched graphene monolayer can eliminate gap states induced by 3D metals in 2D semiconductors. Through this approach, Schottky barrier-free contacts are realized on both p- and n-type 2D FETs, achieving p-type MoTe2, p-type black phosphorus and n-type MoS2 FETs with on-state current densities of 404, 1520, and 761 µA µm−1, respectively, which are among the highest values reported in literature.  相似文献   

14.
We report the electrical transport of the Si nanowires in a field-effect transistor (FET) configuration, which were synthesized from B-doped p-type Si(1 1 1) wafer by an aqueous electroless etching method based on the galvanic displacement of Si by the reduction of Ag+ ions on the wafer surface. The FET performance of the as-synthesized Si nanowires was investigated and compared with Ag-nanoparticles-removed Si nanowires. In addition, high-k HfO2 gate dielectric was applied to the Si nanowires FETs, leading to the enhanced performance such as higher drain current and lower subthreshold swing.  相似文献   

15.
Biocompatible and biodegradable materials are attractive for environmentally safe, flexible and biosustainable devices since they are nontoxic renewable materials with a low cost. Gelatin, a natural protein, is a promising biopolymer for photography, cosmetic manufacturing and food. In this paper, solution-processed natural gelatin was used as a gate dielectric for the fabrication of oxide field-effect transistors (FETs). Similarly to a polyelectrolyte, mobile ions can be generated in gelatin in air environment. A high gate specific capacitance larger than 0.93 μF/cm2 was obtained in gelatin processed at low concentrations, due to the formation of electric-double-layers (EDLs). As gelatin films processed at a low concentration of 0.02 g/mL, the fabricated FETs showed excellent electrical performances. The average current on/off ratio and the mobility were estimated to be 1.36 × 105 and 33.2 cm2/V, respectively. The proposed technique may be application in the bioelectronics field, including biosensors and synaptic devices.  相似文献   

16.
Since transition metal dichalcogenide (TMD) semiconductors are found as 2D van der Waals materials with a discrete energy bandgap, many 2D‐like thin field effect transistors (FETs) and PN diodes are reported as prototype electrical and optoelectronic devices. As a potential application of display electronics, transparent 2D FET devices are also reported recently. Such transparent 2D FETs are very few in report, yet no p‐type channel 2D‐like FETs are seen. Here, 2D‐like thin transparent p‐channel MoTe2 FETs with oxygen (O2) plasma‐induced MoOx/Pt/indium‐tin‐oxide (ITO) contact are reported for the first time. For source/drain contact, 60 s short O2 plasma and ultrathin Pt‐deposition processes on MoTe2 surface are sequentially introduced before ITO thin film deposition and patterning. As a result, almost transparent 2D FETs are obtained with a decent mobility of ≈5 cm2 V?1 s?1, a high ON/OFF current ratio of ≈105, and 70% transmittance. In particular, for normal MoTe2 FETs without ITO, O2 plasma process greatly improves the hole injection efficiency and device mobility (≈60 cm2 V?1 s?1), introducing ultrathin MoOx between Pt source/drain and MoTe2. As a final device application, a photovoltaic current modulator, where the transparent FET stably operates as gated by photovoltaic effects, is integrated.  相似文献   

17.
Platinum diselenide (PtSe2) is a 2D material with outstanding electronic and piezoresistive properties. The material can be grown at low temperatures in a scalable manner, which makes it extremely appealing for many potential electronics, photonics, and sensing applications. Here, the nanocrystalline structure of different PtSe2 thin films grown by thermally assisted conversion (TAC) is investigated and is correlated with their electronic and piezoresistive properties. Scanning transmission electron microscopy for structural analysis, X-ray photoelectron spectroscopy (XPS) for chemical analysis, and Raman spectroscopy for phase identification are used. Electronic devices are fabricated using transferred PtSe2 films for electrical characterization and piezoresistive gauge factor measurements. The variations of crystallite size and their orientations are found to have a strong correlation with the electronic and piezoresistive properties of the films, especially the sheet resistivity and the effective charge carrier mobility. The findings may pave the way for tuning and optimizing the properties of TAC-grown PtSe2 toward numerous applications.  相似文献   

18.
Based on the integrated consideration and engineering of both conjugated backbones and flexible side chains, solution‐processable polymeric semiconductors consisting of a diketopyrrolopyrrole (DPP) backbone and a finely modulated branching side chain (ε‐branched chain) are reported. The subtle change in the branching point from the backbone alters the π?π stacking and the lamellar distances between polymer backbones, which has a significant influence on the charge‐transport properties and in turn the performances of field‐effect transistors (FETs). In addition to their excellent electron mobilities (up to 2.25 cm2 V?1 s?1), ultra‐high hole mobilities (up to 12.25 cm2 V?1 s?1) with an on/off ratio (Ion/Ioff) of at least 106 are achieved in the FETs fabricated using the polymers. The developed polymers exhibit extraordinarily high electrical performance with both hole and electron mobilities superior to that of unipolar amorphous silicon.  相似文献   

19.
In an attempt to disentangle the effects of permittivity and surface energy of the gate insulator (expressed by its dielectric constant k and water contact angle, respectively) on the performance of organic field-effect transistors (FETs), we fabricated top- and bottom-gate FET architectures with poly(3-alkylthiophenes) (P3ATs) of different side-chain lengths, using a range of gate dielectrics. We find that this class of semiconductor, including the short butyl-(C4-) substituted derivative, is significantly less susceptible to the often detrimental effects that high-k dielectrics can have on the performance of many organic FETs. For bottom gate devices we identify the surface energy of the gate dielectric to predominantly dictate the device mobility.  相似文献   

20.
Efficient photocarrier generation and collection are highly desirable for solar-fuel conversion systems. However, the latter is challenging for many photoelectrodes due to carrier losses happening in the semiconductor-electrolyte interface and the semiconductor-substrate interface. To overcome it, a novel Au/CuBi2O4 (CBO)/PtSe2 van der Waals heterojunction photocathode has been developed to boost photocarrier collection. As a result, the ohmic contact at Au/CBO interface shows a low resistance for hole transfer. Meanwhile, while promoting electron transfer, the Van der Waals heterojunction of CBO/PtSe2 interface with energy barrier-blocked holes. Concurrently, the composite photocathode exhibits significantly enhanced performance: a photocurrent of −0.59 mA cm−2 at 0.5 V versus reversible hydrogen electrode and an H2O2 generation rate of 2.39 mol (Lhm2)−1. This work demonstrates the charge regulation role of Van der Waals heterojunctions in the solar-fuel system. More broadly, Van der Waals heterojunctions provide an excellent bond-free approach to creating versatile optoelectronic devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号