首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到1条相似文献,搜索用时 1 毫秒
1.
Topological materials boast exotic metallic surface states with linear dispersion and spin‐momentum locking, which makes them potential candidates for dissipationless electronic and spintronic devices. Here, it is theoretically predicted that intrinsic Te antisite defects (TePb) in the narrow‐gap semiconductor PbTe induce a band inversion, turning it into a topological crystalline insulator (TCI). To experimentally verify the exotic properties, TePb antisites are introduced into PbTe crystals via nonstoichiometric growth by molecular beam epitaxy. Semimetallic resistivity and distinct quantum oscillations are observed on the TePb doped PbTe. Most importantly, a π Berry phase is unambiguously revealed by a Landau index analysis, demonstrating the Dirac fermion nature of the topological surface states. The discovered TCI nature in TePb doped PbTe is further explored using magneto‐transport measurements under external pressure, and the theoretical calculations of band structures with applying pressure indicate a pressure‐induced Lifshitz transition. Besides, it is proposed that the contribution of bulk states to transport can be reduced by enlarging the inverted gap with strain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号