首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The synthesis and mechanical properties of photoswitchable silsesquioxane/azobenzene hybrid 3D-polymers (“dynamic sponges”) are presented and discussed. The hybrid is capable of extensive macroscopic movement, and overcomes previously problematic crosslink locking issues. A hydride-functionalized Q-type silsesquioxane (Q8M8H) is reacted with di-allyloxyazobenzene using hydrosilylation methods. The properties of the resulting materials are controlled via careful choice of starting material ratios and solvent, leading to gels or films. Both morphologies show pronounced photoresponsive behavior in and on the surfaces of different solvents. Photoactuation is tracked by microscopy, dynamic mechanic analysis, and UV–vis spectroscopy. The gel system has a porous structure similar to a sponge. It undergoes shrinkage in volume by 18.3% in toluene under UV irradiation, and shows excellent recovery to the swollen state after irradiation with visible light. These novel photodynamic materials offer reversible modulus switching from 160 kPa in the swollen state to 500 kPa in the “wrung-out” sponge. The sponges can engage in uptake and release of a range of substances (i.e., reversible hydrophobic sponging), with overall performance determined by solvent specific quantities such as polarity and size. Such behavior gives these materials high potential for soft robotics applications and great promise as reusable environmental remediators.  相似文献   

2.
Superwettable solid surfaces have attracted substantial research interest due to their outstanding performance. Various approaches have been developed for preparing superwettable surfaces via constructing a highly textured surface roughness and/or altering the surface free energy. Here, a facile dewetting strategy is proposed to produce multiple superwettabilities on copper hydroxide nanofiber arrays (Cu(OH)2‐NFAs) by controlling the localized state of low‐energy silicone oil. It is proposed that both the capillary forces along each nanofiber and the evaporation of the octane solvent contribute to the localization of the silicone oil in the NFAs. By varying the concentration of the silicone oil, its localized state changes from a scattered discontinuous distribution to a continuous thin/thick film, which leads to variations in the surface energy and surface roughness. Consequently, Cu(OH)2‐NFAs with superhydrophilicity, superhydrophobicity with both high and low adhesion, and super slippery properties are prepared. Notably, a very small amount of silicone oil can alter the surface wettability of the Cu(OH)2‐NFAs from superhydrophilic to superhydrophobic, which is attributable to the migration of silicone oil to the top of the nanofibers during the dewetting process. These results will provide new insights on the facile fabrication of functional surfaces with multiple superwettabilities.  相似文献   

3.
Unidirectional underwater gas bubble (UGB) transport on a surface is realized by buoyant force or wettability gradient force (Fwet‐grad) derived from a tailored geography. Unfortunately, intentional control of the UGB over transport speed, direction, and routes on horizontal planar surfaces is rarely explored. Herein reported is a light‐responsive slippery lubricant‐infused porous surface (SLIPS) composed of selective lubricants and super‐hydrophobic micropillar‐arrayed Fe3O4/polydimethylsiloxane film. Upon this SLIPS, the UGB can be horizontally actuated along arbitrary directions by remotely loading/discharging unilateral near‐infrared (NIR) stimuli. The underlying mechanism is that Fwet‐grad can be generated within 1 s in the presence of a NIR‐trigger due to the photothermal effect of Fe3O4. Once the NIR‐stimuli are discharged, Fwet‐grad vanishes to break the UGB on the SLIPS. Moreover, performed are systematic parameter studies to investigate the influence of bubble volume, lubricant rheology, and Fwet‐grad on the UGB steering performance. Fundamental physics renders the achievement of antibuoyancy manipulation of the UGBs on an inclined SLIPS. Significantly, steering UGBs by horizontal SLIPS to configurate diverse patterns, as well as facilitating light‐control‐light optical shutter, is deployed. Compared with the previous slippery surfaces, light‐responsive SLIPS is more competent for manipulating UGBs with controllable transport speed, direction, and routes independent of buoyancy or geography derivative force.  相似文献   

4.
A simple, facile surface sol–gel method is introduced for the fabrication of zirconium oxide films for use as a dielectric layer of a solution-processed polymer field effect transistor (PFET). High dielectric strength is demonstrated for a zirconium oxide layer under room-temperature fabrication conditions using a surface sol–gel method without any post-treatments, which are typically needed in general sol–gel methods. X-ray photoemission spectroscopy showed that the fabricated zirconium oxide layer consists of inorganic ZrO2 and organic alkoxide groups, which can explain its marginal dielectric constant (∼9) and continuous film properties. In addition, by finishing the surface sol–gel synthesis at the stage of chemisorption, the hydrophobic nature of the final surface was retained, leading to a trap-free semiconductor/dielectric interface. As a result, the PFET made with a conventional polymeric semiconductor rendered nearly hysteresis-free and high mobility (0.3 cm2/V) characteristics at low voltage (<2 V).  相似文献   

5.
Three different strong acid catalysts were used in a simple sol–gel synthesis to produce TiO2 thin films with increased homogeneity and enhanced photocatalytic activity on their mesoporous surfaces. Various techniques were used to characterize the samples, including UV–visible spectrophotometry, X-ray diffraction, micro-Raman spectrometry, photobleaching, scanning electron microscopy, transmission electron microscopy and high-resolution transmission electron microscopy. The band gaps varied from 3.73 to 3.75 eV and the transmittance was >80%. An anatase phase was obtained in all the samples and the crystal size varied from 20 to 45 nm as a function of the annealing temperature. The increase in the efficiency of the surface of the TiO2 thin films was evaluated by photodegradation of methylene blue in water. The results showed that the acid catalysts used in the synthesis had an important effect on the morphology and photocatalytic activity of the thin films, resulting in more efficient surfaces. Synthesis with hydrofluoric acid produced thin films with a homogenous mesoporous structure and improved the photodegradation of the methylene blue dye to 92% in 2.5 h.  相似文献   

6.
Smart manipulation of liquid/bubble transport has garnered widespread attention due to its potential applications in many fields. Designing a responsive surface has emerged as an effective strategy for achieving controllable transport of liquids/bubbles. However, it is still challenging to fabricate stable amphibious responsive surfaces that can be used for the smart manipulation of liquid in air and bubbles underwater. Here, amphibious slippery surfaces are fabricated using magnetically responsive soft poly(dimethylsiloxane) doped with iron powder and silicone oil. The slippery gel surface retains its magnetic responsiveness and demonstrates strong affinity for bubbles underwater but shows small and switching resistance forces with the water droplets in air and bubbles underwater, which is the key factor for achieving the controllable transport of liquids/bubbles. On the slippery gel surface, the sliding behaviors of water droplets and bubbles can be reversibly controlled by alternately applying/removing an external magnetic field. Notably, compared with slippery liquid‐infused porous surfaces, the slippery gel surface demonstrates outstanding stability, whether in air or underwater, even after 100 cycles of alternately applying/removing the magnetic field. This surface shows potential applications in gas/liquid microreactors, gas–liquid mixed fluid transportation, bubble/droplet manipulation, etc.  相似文献   

7.
Coordination complexes are widely used to tune the mechanical behaviors of polymer materials, including tensile strength, stretchability, self-healing, and toughness. However, integrating multivalent functions into one material system via solely coordination complexes is challenging, even using combinations of metal ions and polymer ligands. Herein, a single-step process is described using silver-based coordination complexes as cross-linkers to enable high compressibility (>85%). The resultant organogel displays a high compressive strength (>1 MPa) with a low energy loss coefficient (<0.1 at 50% strain). Remarkably, it demonstrates an instant self-recovery at room temperature with a speed >1200 mm s−1, potentially being utilized for designing high-frequency-responsive soft materials (>100 Hz). Importantly, in situ silver nanoparticles are formed, effectively endowing the organogel with high conductivity (550 S cm−1). Given the synthetic simplification to achieve multi-valued properties in a single material system using metal-based coordination complexes, such organogels hold significant potential for wearable electronics, tissue-device interfaces, and soft robot applications.  相似文献   

8.
Organogels are an important class of gels, and are comparable to hydrogels owing to their properties as liquid-infused soft materials. Despite the extensive choice of liquid media and compatible networks that can provide a broader range of properties, relatively few studies are reported in this area. This review presents the applicability of organogels concerning their choice of components, unique properties, and applications. Their distinctive features compared to other gels are discussed, including multi-stimuli responses, affinity to a broad range of substances, thermal and environmental stability, electronic and ionic conductivity, and actuation. The active role of solvents is highlighted in the versatility of organogel properties. To differentiate between organogels and other gels, these are classified as gels filled with different organic liquids, including highly polar organic solvents and binary solvent systems. Most promising applications of organogels as sophisticated multifunctional materials are discussed in light of their unique features.  相似文献   

9.
The fabrication and properties of “fluoroalkylated paper” (“RF paper”) by vapor‐phase silanization of paper with fluoroalkyl trichlorosilanes is reported. RF paper is both hydrophobic and oleophobic: it repels water (θappH2O>140°), organic liquids with surface tensions as low as 28 mN m‐1, aqueous solutions containing ionic and non‐ionic surfactants, and complex liquids such as blood (which contains salts, surfactants, and biological material such as cells, proteins, and lipids). The propensity of the paper to resist wetting by liquids with a wide range of surface tensions correlates with the length and degree of fluorination of the organosilane (with a few exceptions in the case of methyl trichlorosilane‐treated paper), and with the roughness of the paper. RF paper maintains the high permeability to gases and mechanical flexibility of the untreated paper, and can be folded into functional shapes (e.g., microtiter plates and liquid‐filled gas sensors). When impregnated with a perfluorinated oil, RF paper forms a “slippery” surface (paper slippery liquid‐infused porous surface, or “paper SLIPS“) capable of repelling liquids with surface tensions as low as 15 mN m‐1. The foldability of the paper SLIPS allows the fabrication of channels and flow switches to guide the transport of liquid droplets.  相似文献   

10.
Functional materials with wettability of specific surfaces are important for many areas. Here, a new lubricant‐infused elastic inverse opal is presented with tunable and visually “self‐reporting” surface wettability. The elastic inverse opal films are used to lock in the infused lubricating fluid and construct slippery surfaces to repel droplets of various liquids. The films are stretchable, and the lubricating fluid can penetrate the pores under stretching, leaving the surface layer free of lubrication; the resultant undulating morphology of the inverse opal scaffold topography can reversibly pin droplets on the fluidic film rather than the solid substrate. This mechanical stimulation process provides an effective means of dynamically tuning the surface wettability and the optical transparency of the inverse opal films. In particular, as the adjustments are accompanied by simultaneous deformation of the periodic macroporous structure, the inverse opal films can self‐report on their surface status through visible structural color changes. These features make such slippery structural color materials highly versatile for use in diverse applications.  相似文献   

11.
Electrochromism or electrochromic contrast in electropolymerized thin films of dioxythiophenes based conjugated polymers is known to be sensitive to the structure of monomer and the polymerizing conditions. However in our studies we found that it is also sensitive to the electrode surface wherein a significantly high electrochromic contrast is observed in the electropolymerized thin films of poly(3,4-ethylenedioxythiophene), PEDOT deposited on platinum (71%) as compared to that on indium tin oxide, ITO, coated glass surface (54%). This is attributed to the formation of more conjugated polymer on the metallic surfaces as confirmed by narrow and red shifted absorption peak for PEDOT on platinum compared to broad and blue shifted peak on ITO in the UV–vis absorption spectra. This difference in the electrochromic properties of electropolymerized PEDOT thin films on the two surfaces is investigated by studying their electrochemical growth using UV–vis absorption, Raman spectroscopy and atomic force microscopy techniques. These results suggest the deposition of more conjugated polymer in the initial stages of growth (≤3 mC/cm2) on both the substrates whereas it continues the same way into the intermediate stages (up to ∼15 mC/cm2) only on platinum, thereby, resulting in higher electrochromic contrast on platinum. The coloration efficiency of PEDOT thin film was also found to be improved on platinum (465 cm2/C) compared to that on ITO (230 cm2/C). Moreover, we observed that the EC contrast of electropolymerized PEDOT thin films on platinum was found to be insensitive to polymerizing solvent that is generally not the case when polymerized on ITO. The cyclic stability of PEDOT-Pt films are better compared to that of PEDOT-ITO which is attributed to the improved reversibility of these films with respect to potential switching.  相似文献   

12.
In this study, films of a copper (Cu) alloy, Cu(RuHfN x ), were deposited on silicon (Si) substrates with high thermal stability by co-sputtering copper and minute amounts of Hf or Hf/Ru in an Ar/N2 gas mixture. The Cu(RuHfN x ) films were thermally stable up to 720°C; after annealing at 720°C for 1 h, the thermal stability was great enough to avoid undesired reaction between the copper and the silicon. No copper silicide was formed at the Cu–Si interface for the films after annealing at 720°C for 1 h. The Cu(RuHfN x ) films appear to be good candidate interconnect materials.  相似文献   

13.
The antimicrobial equipment of materials is of great importance in medicine but also in daily life. A challenge is the antimicrobial modification of hydrophobic surfaces without increasing their low surface energy. This is particularly important for silicone‐based materials. Because most antimicrobial surface modifications render the materials more hydrophilic, methods are needed to achieve antimicrobial activity without changing the high water‐contact‐angle. This is achieved in the present work, where SiO2 nanoparticles are prepared and functionalized with 3‐(trimethoxysilyl)‐propyldimethyloctadecyl ammonium chloride (QAS) in a one‐pot synthesis. The modified nanoparticles are applied onto a silicone surface from suspension with no need of elaborate pretreatment. The resulting surface exhibits a Lotus‐Effect combined with contact‐active antimicrobial properties. The particle surfaces show self‐organizing micro‐ and nanostructures that afford a water‐contact angle of 144° and a hysteresis below 10°. The particles are self‐adhering on the silicone after solvent evaporation and resistant against immersion into and washing with water for at least 5 d. Thereby, the adhesion of the bacterial strain Staphylococcus aureus to these surfaces is reduced and the remaining bacterial cells are killed within 16 h. This is the first example of a Lotus‐Effect surface with intrinsic contact‐active antimicrobial properties.  相似文献   

14.
Poly(3‐hexyl thiophene) (P3HT) is widely regarded as the benchmark polymer when studying the physics of conjugated polymers used in organic electronic devices. P3HT can self‐assemble via π–π stacking of its backbone, leading to an assembly and growth of P3HT fibrils into 3D percolating organogels. These structures are capable of bridging the electrodes, providing multiple pathways for charge transport throughout the active layer. Here, a novel set of conditions is identified and discussed for P3HT organogel network formation via spin coating by monitoring the spin‐coating process from various solvents. The development of organogel formation is detected by in situ static light scattering, which measures both the thinning rate by reflectance and structural development in the film via off‐specular scattering during film formation. Optical microscopy and thermal annealing experiments provide ex situ confirmation of organogel fabrication. The role of solution characteristics, including solvent boiling point, P3HT solubility, and initial P3HT solution concentration on organogel formation, is examined to correlate these parameters to the rate of film formation, organogel‐onset concentration, and overall network size. The correlation of film properties to the fabrication parameters is also analyzed within the context of the hole mobility and density‐of‐states measured by impedance spectroscopy.  相似文献   

15.
UV-curable hybrid thin films were prepared from ZrO2 hybrid sols containing the acrylic monomer, DPHA, on substrates. The prepared ZrO2 hybrid sols showed long-term storage stability. Hybrid dielectrics were prepared by sol–gel process and UV cross-linking below 160 °C. Leakage currents of dielectric layers remained below 10−6 A in 2 MV/cm and dielectric constants were measured to be 3.85–4 at 1 kHz. In addition, organic–inorganic hybrid thin films have smooth and hydrophobic surface. Pentacene OTFTs with thin hybrid dielectrics exhibit of mobility as large as 2.5 cm2/V s, subthreshold swing as low as 0.2 V/decade, an on–off ratio of 105. These results demonstrated that UV-curable sol–gel hybrid systems are suitable for gate dielectrics in OTFTs.  相似文献   

16.
A photoresponsive organogel surface (POS), which integrates characteristics of the photothermal property of Fe3O4 nanoparticles and the low hysteresis feature of lubricant‐infused organogels, is shown. A photothermally induced dynamic temperature gradient can be formed rapidly at the location of near‐infrared‐light irradiation (NIR) on POS with suitable Fe3O4 nanoparticles content. Thus, various droplets (e.g., water, glycerol, ethylene glycol, propylene glycol, and ethanol) can be transported effectively and nimbly (e.g., along desired trajectories with controllable velocity and direction, even run uphill and deliver solid particles). This work reveals a synergistic effect between the asymmetrical droplet deformation and the inside Marangoni flows, which forms a unique driving force for droplet transport with high efficiency. This finding offers insight into the design of novel responsive interface materials for droplet transportation, which would be significant for laboratory‐on‐a‐chip contexts, mass transportation, and microengines.  相似文献   

17.
《Organic Electronics》2007,8(6):743-748
We synthesized organic–inorganic hybrid materials (hybrimers) using a simple non-hydrolytic sol–gel reaction and applied the materials as gate insulators in organic thin film transistors (OTFTs). The hybrimer thin films had smooth and hydrophobic surfaces, and were stable with solvents. In addition, the hybrimer thin films had good electrical properties such as low leakage current and high dielectric strength. The performance of the OTFT with hybrimer gate insulator fabricated by drop casting of regioregular poly(3-hexylthiophene) (P3HT) was similar to that of OTFT with hexamethyldisilazane (HMDS) treated thermally grown SiO2. The hysteresis of RR-P3HT based OTFT with hybrimer gate insulator was negligible.  相似文献   

18.
Massive studies concern the development of low-carbon water and energy systems. Specifically, surfaces with special wettability to promote vapor-to-liquid condensation have been widely studied, but current solutions suffer from poor heat transfer performances due to inefficient droplet removal. In this study, the limit of condensation on a beetle-inspired biphilic quasi-liquid surface (QLS) in a steam environment is pushed, which provides a heat flux 100 times higher than that in atmospheric condensation. Unlike the beetle-inspired surfaces that have sticky hydrophilic domains, the biphilic QLS consists of PEGylated and siloxane polymers as hydrophilic and hydrophobic quasi-liquid patterns with the contact angle hysteresis of 3° and 1°, respectively. More importantly, each hydrophilic slippery pattern behaves like a slippery bridge that accelerates droplet coalescence and removal. As a result, the condensed droplets grow rapidly and shed off. It is demonstrated that the biphilic-striped QLS shows a 60% higher water harvesting rate in atmospheric condensation and a 170% higher heat transfer coefficient in steam condensation than the conventional beetle-inspired surface. This study provides a new paradigm to push the limit of condensation heat transfer at a high heat flux, which sheds light on the next-generation surface design for water and energy sustainability.  相似文献   

19.
Many solar-power and wind-power devices in the world urgently demand self-cleaning and de-icing surfaces to ensure stable power generation. However, existing superhydrophobic surfaces and slippery liquid-infused porous surfaces with self-cleaning and de-icing functions are difficult to apply due to various defects. Herein, a novel solid-like slippery coating (SSC) is developed by constructing a smooth epoxy resin surface embedded with oil-stored silica nanoparticles. The SSC has excellent water-slippery capability to various water-based liquids with low to super-high viscosity, excellent durability and robustness, high hardness, strong adhesive strength to substrate, good optical transparency, and easy fabrication processes. This SSC also has remarkable non-sticking, self-cleaning, and de-icing performances, showing promising practical applications in solar and wind power.  相似文献   

20.
Experimental verification of a low temperature (<20 °C), reactive plasma etch process for copper films is presented. The plasma etch process, proposed previously from a thermochemical analysis of the Cu-Cl-H system, is executed in two steps. In the first step, copper films are exposed to a Cl2 plasma to preferentially form CuCl2, which is volatilized as Cu3Cl3 by exposure to a H2 plasma in the second step. Plasma etching of thin films (9 nm) and thicker films (400 nm) of copper has been performed; chemical composition of sample surfaces before and after etching has been determined by X-ray photoelectron and flame atomic absorption spectroscopies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号