首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
Sophisticated sensing and actuation capabilities of many living organisms in nature have inspired scientists to develop biomimetic somatosensory soft robots. Herein, the design and fabrication of homogeneous and highly conductive hydrogels for bioinspired somatosensory soft actuators are reported. The conductive hydrogels are synthesized by in situ copolymerization of conductive surface-functionalized MXene/Poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) ink with thermoresponsive poly(N-isopropylacrylamide) hydrogels. The resulting hydrogels are found to exhibit high conductivity (11.76 S m−1), strain sensitivity (GF of 9.93), broad working strain range (≈560% strain), and high stability after over 300 loading–unloading cycles at 100% strain. Importantly, shape-programmable somatosensory hydrogel actuators with rapid response, light-driven remote control, and self-sensing capability are developed by chemically integrating the conductive hydrogels with a structurally colored polymer. As the proof-of-concept illustration, structurally colored hydrogel actuators are applied for devising light-driven programmable shape-morphing of an artificial octopus, an artificial fish, and a soft gripper that can simultaneously monitor their own motions via real-time resistance variation. This work is expected to offer new insights into the design of advanced somatosensory materials with self-sensing and actuation capabilities, and pave an avenue for the development of soft-matter-based self-regulatory intelligence via built-in feedback control that is of paramount significance for intelligent soft robotics and automated machines.  相似文献   

2.
Stretchable hydrogel microfibers as a novel type of ionic conductors are promising in gaining skin‐like sensing applications in more diverse scenarios. However, it remains a great challenge to fabricate coating‐free but water‐retaining conductive hydrogel microfibers with a good balance of spinnability and mechanical strength. Here the old yet significant redox chemistry of Fe‐citrate complex is employed to solve this issue in the continuous draw‐spinning process of poly(acrylamide‐co‐sodium acrylate) hydrogel microfibers and microfiber nets from a water/glycerol solution. The resultant microfibers are ionically conductive, highly stretchable, and uniform with tunable diameters. Furthermore, the presence of redox‐reversible Fe‐citrate complex and glycerol endows the fibers with good anti‐freezing, water‐retaining, and environmentally intelligent properties. Humidity and UV light can finely mediate the stiffness of hydrogel microfibers; conversely, the ionic conductance of microfibers is also responsive to light, humidity, and strain, which enables the highly sensitive perception of environmental changes. The present draw‐spinning strategy provides more possibilities for coating‐free conductive hydrogel microfibers with a variety of responsive and sensing applications.  相似文献   

3.
Non-contact human-machine interaction is the future trend for wearable technologies. This demand is recently highlighted by the pandemic of coronavirus disease (COVID-19). Herein, an anti-fatigue and highly conductive hydrogel thermocell with photo-thermal conversion ability for non-contact self-powering applications is designed. Double hydrogen-bonding enhanced supramolecular hydrogel is obtained with N-acryloyl glycinamide (NAGA) and diacrylate capped Pluronic F68 (F68-DA) via one-step photo-initiated polymerization. The supramolecular hydrogel can accommodate saturated electrolytes to fulfill the triple function of ionic crosslinking, heat-to-electricity conversion, and light response of thermocell. Eminently, the thermocell stands out by virtue of its high seebeck coefficient (-2.17 mV K−1) and extraordinary toughness (Fatigue threshold ≈ 3120 J m−2). The self-powering ability under the control of light heating is explored, and a model of a non-contact “light-remoted” sensor with self-powered and sensing integrated performance remote-controlled by light is constructed. It is believed that this study will pave the way for the non-contact energy supply of wearable devices.  相似文献   

4.
To date, ionic conducting hydrogel attracts tremendous attention as an alternative to the conventional rigid metallic conductors in fabricating flexible devices, owing to their intrinsic characteristics. However, simultaneous realization of high stiffness, toughness, ionic conductivity, and freezing tolerance through a simple approach is still a challenge. Here, a novel highly stretchable (up to 660%), strong (up to 2.1 MPa), tough (5.25 MJ m?3), and transparent (up to 90%) ionic conductive (3.2 S m?1) organohydrogel is facilely fabricated, through sol–gel transition of polyvinyl alcohol and cellulose nanofibrils (CNFs) in dimethyl sulfoxide‐water solvent system. The ionic conductive organohydrogel presents superior freezing tolerance, remaining flexible and conductive (1.1 S m?1) even at ?70 °C, as compared to the other reported anti‐freezing ionic conductive (organo)hydrogel. Notably, this material design demonstrates synergistic effect of CNFs in boosting both mechanical properties and ionic conductivity, tackling a long‐standing dilemma among strength, toughness, and ionic conductivity for the ionic conducting hydrogel. In addition, the organohydrogel displays high sensitivity toward both tensile and compressive deformation and based on which multi‐functional sensors are assembled to detect human body movement with high sensitivity, stability, and durability. This novel organohydrogel is envisioned to function as a versatile platform for multi‐functional sensors in the future.  相似文献   

5.
Hydrogels that are both highly conductive and mechanically robust have demonstrated great potential in various applications ranging from healthcare to soft robotics; however, the creation of such materials remains an enormous challenge. This study presents an in situ synthesis strategy for developing bioinspired chemically integrated silica-nanofiber-reinforced hydrogels (SFRHs) with robust mechanical and electronic performance. The strategy is to synthesize soft hydrogel matrices from acrylamide monomers in the presence of well-dispersed silica nanofibers and vinyl silane, which generates homogenous SFRHs with innovative interfacial chemical bonds. The resultant SFRHs exhibit excellent mechanical properties including high mechanical strength of 0.3 MPa at a fracture strain of 1400%, high Young's modulus of 0.11 MPa (comparable to human skin), and superelasticity over 1000 tensile cycles without plastic deformation, while maintaining high transmittance (≥83%). In parallel, the SFRHs show enhanced ionic conductivity (3.93 S m−1) and can monitor multiple stimuli (stretching, compressing, and bending) with high sensitivity (gauge factor of 2.67) and ultra-durability (10 000 cycles). This work may shed light on the design and development of tough and stretchable hydrogels for various applications.  相似文献   

6.
High conductivity, large mechanical strength, and elongation are important parameters for soft electronic applications. However, it is difficult to find a material with balanced electronic and mechanical performance. Here, a simple method is developed to introduce ion‐rich pores into strong hydrogel matrix and fabricate a novel ionic conductive hydrogel with a high level of electronic and mechanical properties. The proposed ionic conductive hydrogel is achieved by physically cross‐linking the tough biocompatible polyvinyl alcohol (PVA) gel as the matrix and embedding hydroxypropyl cellulose (HPC) biopolymer fibers inside matrix followed by salt solution soaking. The wrinkle and dense structure induced by salting in PVA matrix provides large stress (1.3 MPa) and strain (975%). The well‐distributed porous structure as well as ion migration–facilitated ion‐rich environment generated by embedded HPC fibers dramatically enhances ionic conductivity (up to 3.4 S m?1, at f = 1 MHz). The conductive hybrid hydrogel can work as an artificial nerve in a 3D printed robotic hand, allowing passing of stable and tunable electrical signals and full recovery under robotic hand finger movements. This natural rubber‐like ionic conductive hydrogel has a promising application in artificial flexible electronics.  相似文献   

7.
Hydrogels are promising materials for electronic skin due to their flexibility and modifiability. Reported hydrogel electronic skins can recognize stimulations and output signals, but the single output signal and the requirement of external power source limit their further applications. In this study, inspired by the neuron system, the self-powered neuron system-like hydrogels based on gelatin, water/glycerin and ionic liquid modified metal organic frameworks (MOFs) are prepared. The optimized hydrogel exhibits excellent adhesion (40 kPa), stretchability (0%–100%), water retention (>92% at 0% relative humidity (RH) atmosphere), ionic conductivity (>10−3 S m−1) and stability (>30 days). Besides, the neuron system-like hydrogels are highly sensitive to pressure (0—10 N) and humidity (0%–75% RH) with dual-modal output, without external power source. Finally, the optimized hydrogel ionic skin is applied in human motion detection, energy harvesting, and low humidity sensing. This study provides a preliminary exploration of self-powered ionic skin for multi-application scenarios.  相似文献   

8.
Conductive hydrogels are attracting tremendous interest in the field of flexible and wearable soft strain sensors because of their great potential in electronic skins, and personalized healthcare monitoring. However, conventional conductive hydrogels using pure water as the dispersion medium will inevitably freeze at subzero temperatures, resulting in the diminishment of their conductivity and mechanical properties; meanwhile, even at room temperature, such hydrogels suffer from the inevitable loss of water due to evaporation, which leads to a poor shelf‐life. Herein, an antifreezing, self‐healing, and conductive MXene nanocomposite organohydrogel (MNOH) is developed by immersing MXene nanocomposite hydrogel (MNH) in ethylene glycol (EG) solution to replace a portion of the water molecules. The MNH is prepared from the incorporation of the conductive MXene nanosheet networks into hydrogel polymer networks. The as‐prepared MNOH exhibits an outstanding antifreezing property (?40 °C), long‐lasting moisture retention (8 d), excellent self‐healing capability, and superior mechanical properties. Furthermore, this MNOH can be assembled as a wearable strain sensor to detect human biologic activities with a relatively broad strain range (up to 350% strain) and a high gauge factor of 44.85 under extremely low temperatures. This work paves the way for potential applications in electronic skins, human?machine interactions, and personalized healthcare monitoring.  相似文献   

9.
Artificial “ionic skin” is of great interest for mimicking the functionality of human skin, such as subtle pressure sensing. However, the development of ionic skin is hindered by the strict requirements of device integration and the need for devices with satisfactory performance. Here, a dual‐material printing strategy for ionic skin fabrication to eliminate signal drift and performance degradation during long‐term use is proposed, while endowing the ionic skins with high sensitivity by 3D printing of ionic hydrogel electrodes with microstructures. The ionic skins are fabricated by alternative digital light processing 3D printing of two photocurable precursors: hydrogel and water‐dilutable polyurethane acrylate (WPUA), in which the ionically conductive hydrogel layers serve as soft, transparent electrodes and the electrically insulated WPUA as flexible, transparent dielectric layers. This novel dual‐material printing strategy enables strong chemical bonding between the hydrogel and the WPUA, endowing the device with designed characteristics. The resulting device has high sensitivity, minimal hysteresis, a response time in the millisecond range, and excellent repetition durability for pressure sensing. The results demonstrate the potential of the dual‐material 3D printing strategy as a pathway to realize highly stable and high‐performance ionic skin fabrication to monitor human physiological signals and human–machine interactions.  相似文献   

10.
To realize wearable displays and interactive soft robots, significant research efforts are focused on developing highly deformable alternating-current electroluminescent (ACEL) devices. Although soft emission layers are well developed, designing stretchable, conductive, and transparent soft electrodes remains challenging. In this study, ionic hydrogels are prepared comprising a double network (DN) of poly(N-hydroxyethylacrylamide-co-acrylamide)/crosslinked chitosan swollen in aqueous lithium bis(trifluoromethanesulfonyl) imide. Owing to the finely tuned DN structure of the polymeric crosslinker and transparent electrolyte, the developed ionic hydrogels exhibit remarkable stretchability (1400%), excellent optical transmittance (>99%), and high conductivity (1.95 × 10−2 Sm−1). Based on the high performance of the ionic hydrogels, ACEL devices are fabricated with an emission layer containing phosphor microparticles and demonstrate stable, high luminance under extreme deformation, and ultra-high elongation. The excellent transparency of the ionic hydrogel further enables the fabrication of novel soft ACEL devices with tandem structures by stacking several emission and electrode layers, in which each emission layer is independently controlled with a switch circuit.  相似文献   

11.
Conductive hydrogels have recently attracted extensive attention in the field of smart wearable electronics. Despite the current versatility of conductive hydrogels, the balance between mechanical properties (tensile properties, strength, and toughness) and electrical properties (electrical conductivity, sensitivity, and stability) still faces great challenges. Herein, a simplified method for constructing hydrophobic association hydrogels with excellent mechanical and electrical properties is proposed. The prepared conductive hydrogels exhibit high tensile properties (≈1224%), high linearity in the whole-strain–range (R2 = 0.999), and a wide strain sensing range (2700%). The conductive hydrogel can realize more than 1000 cycles of sensing under 500% tensile strain. As an application demonstration, an underwater communication device is assembled in combination with polydimethylsiloxane/Triton X-100 film coating, which successfully transmits underwater signals and provides warning of potential hazards. This study provides a new research method for developing underwater equipment with excellent mechanical properties and sensing properties.  相似文献   

12.
Ionic conductive gels are widely sought after for applications that require reliable ionic conduction and mechanical performance under extreme conditions, which remains a grand challenge. To address this limitation, water-induced hydration interactions are deliberately controlled within the ionic liquid (IL)-based conductive gels (ionogels) to achieve all-round performance. Specifically, the competitive interactions between IL, water and cellulose nanofibrils (CNF) are balanced to preserve the nanoscale morphology of CNF while avoiding its dissolution. As a result, both mechanical performance and ionic conductivity of the resultant ionogel are synergistically enhanced. For instance, an ultra stretchable ionogel (up to 10250 ± 412% stretchability) with both high toughness (21.8 ± 0.9 MJ m−3) and ionic conductivity (0.70 ± 0.06 S m−1) is achieved. Furthermore, multimodal sensing functions (strain, compression, temperature, and humidity) are realized by assembling the ionogel as a skin-like membrane. Due to the low volatility of IL and its strong interaction with water, the ionogel maintains an excellent performance at either ultra-low temperature (−45 °C), high temperature (75 °C) or low humidity environment (RH < 15%), demonstrating superb anti-freezing and anti-drying performance. Overall, a simple yet versatile strategy is introduced that leads to environmentally resilient ionogels to meet the requirements of next-generation electroactive devices.  相似文献   

13.
Stretchable conductive fibers have received significant attention due to their possibility of being utilized in wearable and foldable electronics. Here, highly stretchable conductive fiber composed of silver nanowires (AgNWs) and silver nanoparticles (AgNPs) embedded in a styrene–butadiene–styrene (SBS) elastomeric matrix is fabricated. An AgNW‐embedded SBS fiber is fabricated by a simple wet spinning method. Then, the AgNPs are formed on both the surface and inner region of the AgNW‐embedded fiber via repeated cycles of silver precursor absorption and reduction processes. The AgNW‐embedded conductive fiber exhibits superior initial electrical conductivity (σ0 = 2450 S cm?1) and elongation at break (900% strain) due to the high weight percentage of the conductive fillers and the use of a highly stretchable SBS elastomer matrix. During the stretching, the embedded AgNWs act as conducting bridges between AgNPs, resulting in the preservation of electrical conductivity under high strain (the rate of conductivity degradation, σ/σ0 = 4.4% at 100% strain). The AgNW‐embedded conductive fibers show the strain‐sensing behavior with a broad range of applied tensile strain. The AgNW reinforced highly stretchable conductive fibers can be embedded into a smart glove for detecting sign language by integrating five composite fibers in the glove, which can successfully perceive human motions.  相似文献   

14.
An increasing number of applications using ultraviolet radiation have renewed interest in ultraviolet photodetector research. Particularly, solar‐blind photodetectors sensitive to only deep UV (<280 nm), have attracted growing attention because of their wide applicability. Among recent advances in UV detection, nanowire (NW)‐based photodetectors seem promising, however, none of the reported devices possesses the required attributes for practical solar‐blind photodetection, namely, an efficient fabrication process, a high solar light rejection ratio, a low photocurrent noise, and a fast response. Herein, the assembly of β‐Ga2O3 NWs into high‐performance solar‐blind photodetectors by use of an efficient bridging method is reported. The device is made in a single‐step chemical vapor deposition process and has a high 250‐to‐280‐nm rejection ratio (~2 × 103), low photocurrent fluctuation (<3%), and a fast decay time (<<20 ms). Further, variations in the synthesis parameters of the NWs induce drastic changes in the photoresponse properties, which suggest a possibility for tuning the performance of the photodetectors. The efficient fabrication method and high performance of the bridged β‐Ga2O3 NW photodetectors make them highly suitable for solar‐blind photodetection.  相似文献   

15.
Multi-sensing in simple devices, but with a high sensitivity and a large detection range, is desirable for soft machines. Stretchable sensors based on the resistance changes of bulk ionic hydrogels are inherently limited by the single function and low sensitivity at small deformations. Here, a design enabled by a highly cracked hydrogel (HCHG) that is hypersensitive to tensile strain, bending, and tactile force in a wide range is proposed. The mechanism relies on the continuous sharp changes of the cross-sectional area flowing ionic current when pre-cut curved cracks are closed/opened by external load. The high fracture toughness of the hydrogel inhibits the crack propagation, making the sensing robust. By designing the crack patterns, sensitivities of 80 for 0–20% tensile strain and 0.45 kPa−1 for tactile force are achieved. Compared to the sensor made from bulk hydrogel, the sensitivities are enhanced by two and three orders of magnitude, respectively, meanwhile the detectable strain range is maintained (up to 215%). A sandwich design is also developed to distinguish elongation, compression, and bending. Applications of HCHG sensors in manipulating a robotic arm and nondestructive grasping an even softer object by a soft gripper are demonstrated.  相似文献   

16.
The next generation of wearable electronics for health monitoring, Internet‐of‐Things system, “interface‐on‐invisible,” and green energy harvesting require electrically conductive material that is superiorly transparent, negligibly hysteretic, industrially feasible, and highly stretchable. The practical potential of ionic hydrogel is challenged with obvious hysteresis and a limited sensing range due to relative delamination and viscoelastic performance. Herein, a novel liquid conductor, termed as egg white liquid, is developed from self‐liquidation of egg white hydrogel, and the liquid not only inherits the designed architecture from a hydrogel predecessor but also achieves comparable conductivity (20.4 S m?1) to the ionic hydrogel and ultrahigh transparency (up to 99.8%) . Moreover, the 3D‐printed liquid–elastomer hybrid exhibits excellent conformability, remarkable sensitivity with negligible hysteresis (0.77%), and the capability of monitoring human motions and dynamic moduli is further demonstrated. The liquid nature inspires a gesture‐controlled touchless user interface for front‐end electronic systems. Furthermore, mechanical energy harvesting and pressure sensing are evidenced by exploiting this liquid conductor into a triboelectric nanogenerator. Notably, the as‐prepared liquid via subsequent phase transition possessing superior transparency, ultralow hysteresis, economic benefit, and unique liquid phase may potentially fuel the development of a new class of wearable electronics, human–machine interface, and clean energy.  相似文献   

17.
Natural biotissues like muscles, ligaments, and nerves have highly aligned structures, which play critical roles in directional signal transport, sensing, and actuation. Inspired by anisotropic biotissues, composite hydrogels with outstanding mechanical properties and conductivity are developed by compositing thermo-responsive poly (N-isopropylacrylamide) (PNIPAM) hydrogels with highly aligned carbon fibers (CFs). The anisotropic hydrogels show superior tensile strength (3.0 ± 0.3), modulus (74 ± 7.0 MPa), excellent electrical conductivity (≈670 S m−1), and ultra-high sensitivity (gauge factor up to 647) along CFs, with an anisotropic ratio (AR) up to 740 over those in perpendicular direction. The extremely high AR in conductivity (more than 400) produces high-level output in parallel direction and low-level output in perpendicular direction with a direct current (DC) power supply, which is used to fabricate AND and OR gates. Moreover, the composite hydrogels are converted into thermo-responsive actuators with CFs twisted before compositing with PNIPAM/clay network. The pre-twisted CF helices impart internal stress that drives reversible actuation of hydrogel helices upon thermo-stimulating. The actuation is self-sensed due to the extremely high sensitivity of the composite hydrogels. Such biomimetic anisotropic self-sensing hydrogel actuators resemble natural biotissues with both actuation and sensing capabilities, and have promise applications for artificial robotics.  相似文献   

18.
A hybrid approach for the realization of In‐free transparent conductive layers based on a composite of a mesh of silver nanowires (NWs) and a conductive metal‐oxide is demonstrated. As metal‐oxide room‐temperature‐processed sol–gel SnOx or Al:ZnO prepared by low‐temperature (100 °C) atomic layer deposition is used, respectively. In this concept, the metal‐oxide is intended to fuse the wires together and also to “glue” them to the substrate. As a result, a low sheet resistance down to 5.2 Ω sq‐1 is achieved with a concomitant average transmission of 87%. The adhesion of the NWs to the substrate is significantly improved and the resulting composites withstand adhesion tests without loss in conductivity. Owing to the low processing temperatures, this concept allows highly robust, highly conductive, and transparent coatings even on top of temperature sensitive objects, for example, polymer foils, organic devices. These Indium‐ and PEDOT:PSS‐free hybrid layers are successfully implemented as transparent top‐electrodes in efficient all‐solution‐processed semitransparent organic solar cells. It is obvious that this approach is not limited to organic solar cells but will generally be applicable in devices which require transparent electrodes.  相似文献   

19.
Current artificial tactile sensors mostly exploit a variety of electron‐related physical mechanisms to obtain high sensitivity and low detection force. However, these mechanisms are still distinct from the ion‐related biological processes of human's tactile sensation, and are therefore away from the goal of bionic applications. In the past few years, only several types of ionic tactile sensors have been proposed, and they are still subject to low sensitivity. Here, a novel type of ultrasensitive hydrogel tactile sensor is reported based on asymmetric ionic charge injection as the working mechanism, named as asymmetric ionic sensing hydrogel (AISH). With a small external working voltage of only tens of millivolts, these AISH devices show an extremely low detection force of 0.075 Pa, ultrahigh sensitivity of 57–171 kPa?1, and excellent cycling reliability upon pressing. Applications of these ultrasensitive tactile sensors in fingerprint identification of voice, monitoring of pulse waves, and detection of underwater wave signals are experimentally demonstrated. Combining the merits of simple fabrication process, ionic‐type detection mechanism, and ion injection procedure, such AISH sensors not only reveal a new strategy toward highly sensitive tactile sensors, but also show realistic potential applications in future wearable electronic and bioelectronic devices.  相似文献   

20.
The conductive hydrogels always suffered from high internal friction, large hysteresis, and low capability of accurately predicting physical deformation, which seriously restricted their application in smart wearable devices. To address these problems, solvent molecules are directionally inserted into the polymer molecule chains via bridge effect to effectively reduce the molecular internal friction. Moreover, swelling is also combined to eliminate the temporary entanglements in the hydrogel system. The cooperation between the bridge and swollen effect endows the prepared polyacrylamide (PAM)/laponite/H3BO3/ethylene glycol (Eg) organohydrogel (PLBOH) ultralow hysteresis (1.38%, ε = 100%), ultrafast response (≈10 ms), and high linearity in the whole-strain-range (R2 = 0.996) with a great sensitivity (GF = 2.68 at the strain range of 0–750%). Meanwhile, the prepared PL10B30OH exhibits long-term stability, excellent stretchability, and low dissipated energy. Furthermore, the assembled triboelectric nanogenerator (TENG) displays an outstanding energy harvesting performance with an output voltage of 200 V with the size of 20 mm × 20 mm. The assembled strain sensors can monitor the small strain of facial expressions and large strain of human movements, indicating the tremendous applications in self-powered intelligent and flexible wearable electronics under harsh environmental conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号