首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wireless functionality is essential for the implementation of wearable systems, but its adaptation in stretchable electronic systems has had limited success. In this paper, the electromagnetic properties of stretchable serpentine mesh‐based systems is studied, and this general strategy is used to produce high‐performance stretchable microwave systems. Stretchable mechanics are enabled by converting solid metallic sections in conventional systems to subwavelength‐scale serpentine meshes, followed by bonding to an elastomeric substrate. Compared to prior implementations of serpentine meshes in microwave systems, this conversion process is extended to arbitrary planar layouts, including those containing curvilinear shapes. A detailed theoretical analysis is also performed and a natural tradeoff is quantified between the stretching mechanics and microwave performance of these systems. To explore the translation of these concepts from theory to experiment, two types of stretchable microwave devices are fabricated and characterized: a stretchable far‐field dipole antenna for communications and a stretchable midfield phased surface for the wireless powering of biomedical implanted devices.  相似文献   

2.
The development of flexible and stretchable electronics has attracted intensive attention for their promising applications in next‐generation wearable functional devices. However, these stretchable devices that are made in a conventional planar format have largely hindered their development, especially in highly stretchable conditions. Herein, a novel type of highly stretchable, fiber‐based triboelectric nanogenerator (fiber‐like TENG) for power generation is developed. Owing to the advanced structural designs, including the fiber‐convolving fiber and the stretchable electrodes on elastic silicone rubber fiber, the fiber‐like TENG can be operated at stretching mode with high strains up to 70% and is demonstrated for a broad range of applications such as powering a commercial capacitor, LCD screen, digital watch/calculator, and self‐powered acceleration sensor. This work verifies the promising potential of a novel fiber‐based structure for both power generation and self‐powered sensing.  相似文献   

3.
Many emerging technologies such as wearable batteries and electronics require stretchable functional structures made from intrinsically less deformable materials. The stretch capability of most demonstrated stretchable structures often relies on either initially out‐of‐plane configurations or the out‐of‐plane deflection of planar patterns. Such nonplanar features may dramatically increase the surface roughness, cause poor adhesion and adverse effects on subsequent multilayer processing, thereby posing a great challenge for flexible devices that require smooth surfaces (e.g., transparent electrodes in which flat‐surface‐enabled high optical transmittance is preferred). Inspired by the lamellar layouts of collagenous tissues, this work demonstrates a planar bilayer lattice structure, which can elongate substantially via only in‐plane motion and thus maintain a smooth surfaces. The constructed bilayer lattice exhibits a large stretchability up to 360%, far beyond the inherent deformability of the brittle constituent material and comparable to that of state‐of‐the‐art stretchable structures for flexible electronics. A stretchable conductor employing the bilayer lattice designs can remain electrically conductive at a strain of 300%, demonstrating the functionality and potential applications of the bilayer lattice structure. This design opens a new avenue for the development of stretchable structures that demand smooth surfaces.  相似文献   

4.
Stretchable electronics (i.e., Elastronics) are essential to the realization of next-generation wearable bioelectronics for personalized medicine, due to their unique skin-conformal features ideal for seamless integration with the human body. Significant progress has been made to nanowire-based elastronics with promising applications ranging from electronic-skin to advanced energy harvest systems. However, it remains a key challenge to rationally control over the nanowire morphology and configurations to achieve desired multifunctionality. Herein, a stretchable jellyfish-like gold nanowires film with high conductivity and stretchability is presented by using gold nanostar-seeded nanowire growth method. They exhibit unique hierarchically oriented structure with gold nanostars as the multi-branched active sites (top layer) and vertically intertwined nanowires (bottom layer) trailing below the nanostars. Such nanowires film can be stretched up to 200% with a retaining low normalized resistance of 13.8 due to the unique hierarchical structure. Furthermore, the film can be used as stretchable supercapacitor with a 92% capacitance retention and superior durability even after 5000 electrochemical scanning cycles. The method is general, which can be further expanded to other metallic seeds, hence, representing a low-cost yet efficient strategy for the fabrication of stretchable elastronics and robust energy storage devices for on-body biosensing and bioelectronics.  相似文献   

5.
The progressive size reduction of electronic components is experiencing bottlenecks in shrinking charge storage devices like batteries and supercapacitors, limiting their development into wearable and flexible zero‐pollution technologies. The inherent long cycle life, rapid charge–discharge patterns, and power density of supercapacitors rank them superior over other energy storage devices. In the modern market of zero‐pollution energy devices, currently the lightweight formula and shape adaptability are trending to meet the current requirement of wearables. Carbon nanomaterials have the potential to meet this demand, as they are the core of active electrode materials for supercapacitors and texturally tailored to demonstrate flexible and stretchable properties. With this perspective, the latest progress in novel materials from conventional carbons to recently developed and emerging nanomaterials toward lightweight stretchable active compounds for flexi‐wearable supercapacitors is presented. In addition, the limitations and challenges in realizing wearable energy storage systems and integrating the future of nanomaterials for efficient wearable technology are provided. Moreover, future perspectives on economically viable materials for wearables are also discussed, which could motivate researchers to pursue fabrication of cheap and efficient flexible nanomaterials for energy storage and pave the way for enabling a wide‐range of material‐based applications.  相似文献   

6.
Wide bandgap (WBG) semiconductors have attracted significant research interest for the development of a broad range of flexible electronic applications, including wearable sensors, soft logical circuits, and long-term implanted neuromodulators. Conventionally, these materials are grown on standard silicon substrates, and then transferred onto soft polymers using mechanical stamping processes. This technique can retain the excellent electrical properties of wide bandgap materials after transfer and enables flexibility; however, most devices are constrained by 2D configurations that exhibit limited mechanical stretchability and morphologies compared with 3D biological systems. Herein, a stamping-free micromachining process is presented to realize, for the first time, 3D flexible and stretchable wide bandgap electronics. The approach applies photolithography on both sides of free-standing nanomembranes, which enables the formation of flexible architectures directly on standard silicon wafers to tailor the optical transparency and mechanical properties of the material. Subsequent detachment of the flexible devices from the support substrate and controlled mechanical buckling transforms the 2D precursors of wide band gap semiconductors into complex 3D mesoscale structures. The ability to fabricate wide band gap materials with 3D architectures that offer device-level stretchability combined with their multi-modal sensing capability will greatly facilitate the establishment of advanced 3D bio-electronics interfaces.  相似文献   

7.
There is a growing demand for flexible and soft electronic devices. In particular, stretchable, skin‐mountable, and wearable strain sensors are needed for several potential applications including personalized health‐monitoring, human motion detection, human‐machine interfaces, soft robotics, and so forth. This Feature Article presents recent advancements in the development of flexible and stretchable strain sensors. The article shows that highly stretchable strain sensors are successfully being developed by new mechanisms such as disconnection between overlapped nanomaterials, crack propagation in thin films, and tunneling effect, different from traditional strain sensing mechanisms. Strain sensing performances of recently reported strain sensors are comprehensively studied and discussed, showing that appropriate choice of composite structures as well as suitable interaction between functional nanomaterials and polymers are essential for the high performance strain sensing. Next, simulation results of piezoresistivity of stretchable strain sensors by computational models are reported. Finally, potential applications of flexible strain sensors are described. This survey reveals that flexible, skin‐mountable, and wearable strain sensors have potential in diverse applications while several grand challenges have to be still overcome.  相似文献   

8.
Wearable smart electronic devices based on wireless systems use batteries as a power source. However, recent miniaturization and various functions have increased energy consumption, resulting in problems such as reduction of use time and frequent charging. These factors hinder the development of wearable electronic devices. In order to solve this energy problem, research studies on triboelectric nanogenerators (TENGs) are conducted based on the coupling of contact‐electrification and electrostatic induction effects for harvesting the vast amounts of biomechanical energy generated from wearer movement. The development of TENGs that use a variety of structures and materials based on the textile platform is reviewed, including the basic components of fibers, yarns, and fabrics made using various weaving and knitting techniques. These textile‐based TENGs are lightweight, flexible, highly stretchable, and wearable, so that they can effectively harvest biomechanical energy without interference with human motion, and can be used as activity sensors to monitor human motion. Also, the main application of wearable self‐powered systems is demonstrated and the directions of future development of textile‐based TENG for harvesting biomechanical energy presented.  相似文献   

9.
Carbon nanotubes (CNTs) are a promising material for use as a flexible electrode in wearable energy devices due to their electrical conductivity, soft mechanical properties, electrochemical activity, and large surface area. However, their electrical resistance is higher than that of metals, and deformations such as stretching can lead to deterioration of electrical performances. To address these issues, here a novel stretchable electrode based on laterally combed CNT networks is presented. The increased percolation between combed CNTs provides a high electrical conductivity even under mechanical deformations. Additional nickel electroplating and serpentine electrode designs increase conductivity and deformability further. The resulting stretchable electrode exhibits an excellent sheet resistance, which is comparable to conventional metal film electrodes. The resistance change is minimal even when stretched by ≈100%. Such high conductivity and deformability in addition to intrinsic electrochemically active property of CNTs enable high performance stretchable energy harvesting (wireless charging coil and triboelectric generator) and storage (lithium ion battery and supercapacitor) devices. Monolithic integration of these devices forms a wearable energy supply system, successfully demonstrating its potential as a novel soft power supply module for wearable electronics.  相似文献   

10.
Graphene has been highlighted as a platform material in transparent electronics and optoelectronics, including flexible and stretchable ones, due to its unique properties such as optical transparency, mechanical softness, ultrathin thickness, and high carrier mobility. Despite huge research efforts for graphene‐based electronic/optoelectronic devices, there are remaining challenges in terms of their seamless integration, such as the high‐quality contact formation, precise alignment of micrometer‐scale patterns, and control of interfacial‐adhesion/local‐resistance. Here, a thermally controlled transfer printing technique that allows multiple patterned‐graphene transfers at desired locations is presented. Using the thermal‐expansion mismatch between the viscoelastic sacrificial layer and the elastic stamp, a “heating and cooling” process precisely positions patterned graphene layers on various substrates, including graphene prepatterns, hydrophilic surfaces, and superhydrophobic surfaces, with high transfer yields. A detailed theoretical analysis of underlying physics/mechanics of this approach is also described. The proposed transfer printing successfully integrates graphene‐based stretchable sensors, actuators, light‐emitting diodes, and other electronics in one platform, paving the way toward transparent and wearable multifunctional electronic systems.  相似文献   

11.
Stretchable physical sensors that can detect and quantify human physiological signals such as temperature, are essential to the realization of healthcare devices for biomedical monitoring and human–machine interfaces. Despite recent achievements in stretchable electronic sensors using various conductive materials and structures, the design of stretchable sensors in optics remains a considerable challenge. Here, an optical strategy for the design of stretchable temperature sensors, which can maintain stable performance even under a strain deformation up to 80%, is reported. The optical temperature sensor is fabricated by the incorporation of thermal‐sensitive upconversion nanoparticles (UCNPs) in stretchable polymer‐based optical fibers (SPOFs). The SPOFs are made from stretchable elastomers and constructed in a step‐index core/cladding structure for effective light confinements. The UCNPs, incorporated in the SPOFs, provide thermal‐sensitive upconversion emissions at dual wavelengths for ratiometric temperature sensing by near‐infrared excitation, while the SPOFs endow the sensor with skin‐like mechanical compliance and excellent light‐guiding characteristics for laser delivery and emission collection. The broad applications of the proposed sensor in real‐time monitoring of the temperature and thermal activities of the human body, providing optical alternatives for wearable health monitoring, are demonstrated.  相似文献   

12.
Through harvesting energy from the environment or human body, self-power wearable electronics have an opportunity to break through the limitations of battery supply and achieving long-term continuous operation. Here, a wireless wearable monitoring system driven entirely by body heat is implemented. Based on the principle of maximizing heat utilization, while optimizing internal resistance and heat dissipation, the stretchable TEG improves the power density of previous similar devices from only a few microwatts per square centimeter to tens and makes it possible to continuously drive wireless wearable electronic systems. Furthermore, ceaseless self-power energy gives wearable electronics unparalleled continuous working ability, which can realize the tracking and monitoring of biochemical and physiological indicators at different time scale. A practical system demonstrates the ability to real-time monitor heart rate, sweat ingredient and body motion at a high sampling rate. This study marks an important advance of self-powered wearable electronics for wirelessly real-time healthy monitoring.  相似文献   

13.
The development of stretchable electronic devices that are soft and conformable has relied heavily on a single material—polydimethylsiloxane—as the elastomeric substrate. Although polydimethylsiloxane has a number of advantageous characteristics, its high gas permeability is detrimental to stretchable devices that use materials sensitive to oxygen and water vapor, such as organic semiconductors and oxidizable metals. Failing to protect these materials from atmosphere‐induced decomposition leads to premature device failure; therefore, it is imperative to develop elastomers with gas barrier properties that enable stretchable electronics with practical lifetimes. Here, butyl rubber—a material with an intrinsically low gas permeability traditionally used in the innerliners of tires to maintain air pressure—is reinvented for stretchable electronics. This new material is smooth and optically transparent, possesses the low gas permeability typical of butyl rubber, and vastly outperforms polydimethylsiloxane as an encapsulating barrier to prevent the atmospheric degradation of sensitive electronic materials and the premature failure of functioning organic devices. The merits of transparent butyl rubber presented here position this material as an important counterpart to polydimethylsiloxane that will enable future generation stretchable electronics.  相似文献   

14.
With the development of wearable electronics, the use of engineered functional inks with printing technologies has attracted attention owing to its potential for applications in low-cost, high-throughput, and high-performance devices. However, the improvement in conductivity and stretchability in the mass production of inks is still a challenge for practical use in wearable applications. Herein, a scalable and efficient fluid dynamics process that produces highly stretchable, conductive, and printable inks containing a high concentration of graphene is reported. The resulting inks, in which the uniform incorporation of exfoliated graphene flakes into a viscoelastic thermoplastic polyurethane is employed, facilitated the screen-printing process, resulting in high conductivity and excellent electromechanical stability. The electrochemical analysis of a stretchable sodium ion sensor based on a serpentine-structured pattern results in excellent electrochemical sensing performance even under strong fatigue tests performed by repeated stretching (300% strain) and release cycles. To demonstrate the practical use of the proposed stretchable conductor, on-body tests are carried out in real-time to monitor the sweat produced by a volunteer during simultaneous physical stretching and stationary cycling. These functional graphene inks have attractive performance and offer exciting potential for a wide range of flexible and wearable electronic applications.  相似文献   

15.
Body integrated wearable electronics can be used for advanced health monitoring, security, and wellness. Due to the complex, asymmetric surface of human body and atypical motion such as stretching in elbow, finger joints, wrist, knee, ankle, etc. electronics integrated to body need to be physically flexible, conforming, and stretchable. In that context, state‐of‐the‐art electronics are unusable due to their bulky, rigid, and brittle framework. Therefore, it is critical to develop stretchable electronics which can physically stretch to absorb the strain associated with body movements. While research in stretchable electronics has started to gain momentum, a stretchable antenna which can perform far‐field communications and can operate at constant frequency, such that physical shape modulation will not compromise its functionality, is yet to be realized. Here, a stretchable antenna is shown, using a low‐cost metal (copper) on flexible polymeric platform, which functions at constant frequency of 2.45 GHz, for far‐field applications. While mounted on a stretchable fabric worn by a human subject, the fabricated antenna communicated at a distance of 80 m with 1.25 mW transmitted power. This work shows an integration strategy from compact antenna design to its practical experimentation for enhanced data communication capability in future generation wearable electronics.  相似文献   

16.
Liquid metal (LM) has recently been used as an advanced stretchable material for constructing stretchable and wearable electronics. However, due to the poor wettability of LM and the large dimensional change during stretching, it remains very challenging to obtain a high conductivity with minimum resistance increase over large tensile strains. To address the challenge, an LM-superlyophilic and stretchable fibrous thin-film scaffold is reported, on which LM can be readily coated or printed to form permeable superelastic conductors. In contrast to conventional LM-based conductors where LM particles are filled into an elastic matrix or printed on the surface of an elastic thin film, the LM can quickly infuse into the LM-superlyophilic scaffold and form bi-continuous phases. The LM-superlyophilic scaffold shows unprecedented advantages of an extremely high uptake of the LM and a conductivity-enhancement characteristic when stretched. As a result, the LM-based conductor displays and ultrahigh conductivity of 155 900 S cm−1 and a marginal resistance change by only 2.5 fold at 2 500% strain. The conductor also possesses a remarkable durability over a period of 220 000 cycles of stretching tests. The printing of LM onto the LM-superlyophilic scaffold for the fabrication of various permeable and wearable electronic devices is demonstrated.  相似文献   

17.
With the rapid advances in safe, flexible, and even stretchable electronic products, it is important to develop matching energy storage devices to more effectively power them. However, the use of conventional liquid electrolytes produces volatilization and leakage that are dangerous and requires strict packaging layers that are typically rigid. To this end, solid electrolytes that can overcome these problems have attracted increasing attention in recent decades. In this review article, three main types of solid electrolytes (i.e., inorganic, polymer, and composite electrolytes) are first described and compared in terms of their structures and properties. The advantages of solid electrolytes to make safe, flexible, stretchable, wearable, and self‐healing energy storage devices, including supercapacitors and batteries, are then discussed. The remaining challenges and possible directions are finally summarized to highlight future development in this field.  相似文献   

18.
Hydrogels are promising materials in the applications of wound adhesives, wearable electronics, tissue engineering, implantable electronics, etc. The properties of a hydrogel rely strongly on its composition. However, the optimization of hydrogel properties has been a big challenge as increasing numbers of components are added to enhance and synergize its mechanical, biomedical, electrical, and self-healable properties. Here in this work, it is shown that high-throughput screening can efficiently and systematically explore the effects of multiple components (at least eight) on the properties of polysulfobetaine hydrogels, as well as provide a useful database for diverse applications. The optimized polysulfobetaine hydrogels that exhibit outstanding self-healing and mechanical properties, have been obtained by high-throughput screening. By compositing with poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS), intrinsically self-healable and stretchable conductors are achieved. It is further demonstrated that a polysulfobetaine hydrogel-based electronic skin, which exhibits exceptionally fast self-healing capability of the whole device at ambient conditions. This work successfully extends high-throughput synthetic methodology to the field of hydrogel electronics, as well as demonstrates new directions of healable flexible electronic devices in terms of material development and device design.  相似文献   

19.
Stretchable electrical interconnects based on serpentines combined with elastic materials are utilized in various classes of wearable electronics. However, such interconnects are primarily for direct current or low‐frequency signals and incompatible with microwave electronics that enable wireless communication. In this paper, design and fabrication procedures are described for stretchable transmission line capable of delivering microwave signals. The stretchable transmission line has twisted‐pair design integrated into thin‐film serpentine microstructure to minimize electromagnetic interference, such that the line's performance is minimally affected by the environment in close proximity, allowing its use in thin‐film bioelectronics, such as the epidermal electronic system. Detailed analysis, simulations, and experimental results show that the stretchable transmission line has negligible changes in performance when stretched and is operable on skin through suppressed radiated emission achieved with the twisted‐pair geometry. Furthermore, stretchable microwave low‐pass filter and band‐stop filter are demonstrated using the twisted‐pair structure to show the feasibility of the transmission lines as stretchable passive components. These concepts form the basic elements used in the design of stretchable microwave components, circuits, and subsystems performing important radio frequency functionalities, which can apply to many types of stretchable bioelectronics for radio transmitters and receivers.  相似文献   

20.
The booming field of wearable devices has nourished progress in developing multifunctional wearable energy sources that can withstand deformations while maintaining their electrochemical functions. Unlike energy storage systems such as rechargeable batteries and supercapacitors, wearable biofuel cells (w-BFCs) generate green electricity from energy-dense carbon-neutral fuels via highly efficient bioelectrochemical reactions, delivering excellent biocompatibility, remarkable environmental sustainability, and exceptional capability of miniaturization. These desirable merits give w-BFCs great potential in the field of wearable applications. Moreover, emerging studies of w-BFCs in self-powered biosensing, controlled drug delivery, and wound dressings have greatly expanded their possible fields of application. Recent progress and strategies to accomplish flexible and stretchable w-BFCs are summarized here. Novel materials and configurations with tailored features that can be employed to fabricate w-BFCs are elaborated and discussed. Current applications and near-future applications of w-BFCs in health-monitoring and medical treatment fields are outlined. Furthermore, challenges and perspectives regarding this emerging field of materials science and engineering are also emphasized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号