首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Heterojunction materials are promising candidates for oxygen evolution reaction (OER) electrocatalysts to break the linear scaling relationship and lower the reaction barrier. However, the application of heterojunction materials is always hindered by the complicated multistep synthetic procedures which bring cost, complexity, and reproducibility issues. Herein, a strategy of kinetic controlled synthesis is developed to achieve the one-pot formation of bimetallic metal-organic framework (MOF)/layered double hydroxide (LDH) heterojunction electrodes as highly efficient OER electrocatalysts. The heterojunction electrodes present hierarchical structures with highly porous NiFe-LDH nanosheet networks vertically grown on the surface of NiFe-MOF-74 microprisms, promoting fast mass transport and high exposure of active sites. The strong interactions at the MOF/LDH heterojunction interfaces contribute to the outstanding OER activity surpassing the state-of-art RuO2 OER catalysts. The MOF/LDH heterojunction electrode exhibits an ultralow overpotential of only 159.7 mV to reach the current density of 10 mA cm−2, and yields large current densities at small overpotential (100 mA cm−2 at 230.2 mV and 1000 mA cm−2 at 284.3 mV) with long-term durability. This study presents an innovative approach to construct heterojunction materials with simple one-step synthesis, offering a promising pathway for high-efficiency electrocatalyst development.  相似文献   

2.
A new type of lanthanum-based high entropy perovskite oxide (HEPO) electrocatalyst for the oxygen evolution reaction is reported. The B-site lattices in the HEPO consist of five consecutive first-row transition metals, including Cr, Mn, Fe, Co, and Ni. Equimolar and five non-equimolar HEPO electrocatalysts are studied for their OER electrocatalytic performance. In the five non-equimolar HEPOs, the concentration of one of the five transition metals is doubled in individual samples. The performances of all the HEPOs outperform the single perovskite oxides. The optimized La(CrMnFeCo2Ni)O3 HEPO exhibits an outstanding OER overpotential of 325 mV at a current density of 10 mA cm−2 and excellent electrochemical stability after 50 h of testing.  相似文献   

3.
Designing robust and cost-effective electrocatalysts based on Earth-abundant elements is crucial for large-scale hydrogen production through electrochemical water splitting. Here, nitrogen-doped carbon engrafted Mo2N/CoN hybrid nanosheets that are seamlessly oriented on hierarchical nanoporous Cu scaffold (Mo-/Co-N-C/Cu), as highly efficient electrocatalysts for alkaline hydrogen evolution reaction are reported. The constituent heterostructured Mo2N/CoN nanosheets work as bifunctional electroactive sites for both water dissociation and adsorption/desorption of hydrogen intermediates while the nitrogen-doped carbon bridges electron transfers between electroactive sites and interconnective Cu current collectors by making use of Mo-/Co-N-C bonds and intimate C/Cu contacts at interfaces. As a consequence of unique architecture having electroactive sites to be sufficiently accessible, self-supported nanoporous Mo-/Co-N-C/Cu hybrid electrodes exhibit outstanding electrocatalysis in 1 m KOH, with a negligible onset overpotential and a low Tafel slope of 47 mV dec−1. They only take overpotential of as low as 230 mV to reach current density of 1000 mA cm−2. When coupled with their electro-oxidized derivatives that mediate efficiently the oxygen evolution reaction, the alkaline water electrolyzer can achieve ≈100 mA cm−2 at 1.622 V in 1 m KOH electrolyte, ≈0.343 V lower than the device constructed with commercially available Pt/C and Ir/C nanocatalysts immobilized on nanoporous Cu electrodes.  相似文献   

4.
The oxygen evolution reaction (OER) is crucial for producing sustainable energy carriers. Herein, Ir (5 mol.%) doped inverse-spinel NiFe2O4 (Ir-NFO) nanoparticles deposited on Ni foam (NF) by scalable solution casting are considered a promising OER electrocatalyst for industrial deployments. The Ir-NFO/NF (with minimal lattice distortion by uniform Ir doping) provides an OER overpotential of 251 mV (intrinsically outperforming NFO/NF and benchmarking IrO2/NF) and extraordinary robustness over 130 days at 100 mA cm−2. In situ X-ray absorption spectroscopy reveals oxidation only for Fe on NFO, whereas concurrent generation of higher-valent Ni and Fe occurs on Ir-NFO during OER. Density functional theory calculations further demonstrate that Ir substitutes the sublayer Ni octahedral site and switches the main active reaction center from FeOh FeTd bridge site (Fe O Fe) on NFO to NiOh–FeTd bridge site (Ni O Fe active motif) on Ir-NFO for a co-catalytic OER. This study sheds new light on precious-metal doped Ni-Fe oxides, which may be applicable to other binary/ternary oxide electrocatalysts.  相似文献   

5.
3D hierarchical heterostructure NiFe LDH@NiCoP/NF electrodes are prepared successfully on nickel foam with special interface engineering and synergistic effects. This research finds that the as‐prepared NiFe LDH@NiCoP/NF electrodes have a more sophisticated inner structure and intensive interface than a simple physical mixture. The NiFe LDH@NiCoP/NF electrodes require an overpotential as low as 120 and 220 mV to deliver 10 mA cm?2 for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in 1 m KOH, respectively. Tafel and electrochemical impedance spectroscopy further reveal a favorable kinetic during electrolysis. Specifically, the NiFe LDH@NiCoP/NF electrodes are simultaneously used as cathode and anode for overall water splitting, which requires a cell voltage of 1.57 V at 10 mA cm?2. Furthermore, the synergistic effect of the heterostructure improves the structural stability and promotes the generation of active phases during HER and OER, resulting in excellent stability over 100 h of continuous operation. Moreover, the strategy and interface engineering of the introduced heterostructure can also be used to prepare other bifunctional and cost‐efficient electrocatalysts for various applications.  相似文献   

6.
Practical electrochemical water splitting requires cost‐effective electrodes capable of steadily working at high output, leading to the challenges for efficient and stable electrodes for the oxygen evolution reaction (OER). Herein, by simply using conductive FeS microsheet arrays vertically pre‐grown on iron foam (FeS/IF) as both substrate and source to in situ form vertically aligned NiFe(OH)x nanosheets arrays, a hierarchical electrode with a nano/micro sheet‐on‐sheet structure (NiFe(OH)x/FeS/IF) can be readily achieved to meet the requirements. Such hierarchical electrode architecture with a superhydrophilic surface also allows for prompt gas release even at high output. As a result, NiFe(OH)x/FeS/IF exhibits superior OER activity with an overpotential of 245 mV at 50 mA cm?2 and can steadily output 1000 mA cm?2 at a low overpotential of 332 mV. The water‐alkali electrolyzer using NiFe(OH)x/FeS/IF as the anode can deliver 10 mA cm?2 at 1.50 V and steadily operate at 300 mA cm?2 with a small cell voltage for 70 h. Furthermore, a solar‐driven electrolyzer using the developed electrode demonstrates an exceptionally high solar‐to‐hydrogen efficiency of 18.6%. Such performance together with low‐cost Fe‐based materials and facile mass production suggest the present strategy may open up opportunities for rationally designing hierarchical electrocatalysts for practical water splitting or diverse applications.  相似文献   

7.
Direct seawater electrolysis provides a grand blueprint for green hydrogen (H2) technology, while the high energy consumption has severely hindered its industrialization. Herein, a promising active site implantation strategy is reported for Ni(OH)2 nanowire network electrode on nickel foam substrate by Ru doping (denoted as Ru Ni(OH)2 NW2/NF), which can act as a dual-function catalyst for hydrazine oxidation and hydrogen evolution, achieving an ultralow working potential of 114.6 mV to reach 1000 mA cm−2 and a small overpotential of 30 mV at 10 mA cm−2, respectively. Importantly, using the two-electrode hydrazine oxidation assisted seawater electrolysis, it can drive a large current density of 500 mA cm−2 at 0.736 V with over 200 h stability. To demonstrate the practicability, a home-made flow electrolyzer is constructed, which can realize the industry-level rate of 1 A cm−2 with a record-low voltage of 1.051 V. Theoretical calculations reveal that the Ru doping activates Ni(OH)2 by upgrading d-band centers, which raises anti-bonding energy states and thus strengthens the interaction between adsorbates and catalysts. This study not only provides a novel rationale for catalyst design, but also proposes a feasible strategy for direct alkaline seawater splitting toward sustainable, yet energy-saving H2 production.  相似文献   

8.
Developing highly efficient and durable electrocatalysts toward oxygen evolution reaction (OER) is an urgent demand to produce clean hydrogen energy. In this study, a series of medium-entropy metal sulfides (MEMS) of (NiFeCoX)3S4 (where X = Mn, Cr, Zn) are synthesized by a facile one-pot solvothermal strategy using molecular precursors. Benefiting from the multiple-metal synergistic effect and the low crystallinity, these MEMS show significantly enhanced electrocatalytic OER activity compared with the binary-metal (NiFe)3S4 and ternary-metal (NiFeCo)3S4 counterparts. Especially, (NiFeCoMn)3S4 delivers a low overpotential of 289 mV at 10 mA cm−2, a decent Tafel slope of 75.6 mV dec−1 and robust catalytic stability in alkaline medium, outperforming the costly IrO2 benchmark electrocatalyst and the majority of the reported metal sulfide-based electrocatalysts until now. These MEMS with facile synthesis and excellent electrocatalytic performance bring a great opportunity to design desirable electrocatalysts for practical application.  相似文献   

9.
Hydrazine oxidation assisted water electrolysis offers a unique rationale for energy-saving hydrogen production, yet the lack of effective non-noble-metal bifunctional catalysts is still a grand challenge at the current stage. Here, the Mo doped Ni3N and Ni heterostructure porous nanosheets grow on Ni foam (denoted as Mo Ni3N/Ni/NF) are successfully constructed, featuring simultaneous interface engineering and chemical substitution, which endow the outstanding bifunctional electrocatalytic performances toward both hydrazine oxidation reaction (HzOR) and hydrogen evolution reaction (HER), demanding a working potential of −0.3 mV to reach 10 mA cm−2 for HzOR and −45 mV for that of HER. Impressively, the overall hydrazine splitting (OHzS) system requires an ultralow cell voltage of 55 mV to deliver 10 mA cm−2 with remarkable long-term durability. Moreover, as a proof-of-concept, economical H2 production systems utilizing OHzS unit powered by a waste AAA battery, a commercial solar cell, and a homemade direct hydrazine fuel cell (DHzFC) are investigated to inspire future practical applications. The density functional theory calculations demonstrate that the synergy of Mo substitution and abundant Ni3N/Ni interface owns a more thermoneutral value for H* absorption ability toward HER and optimized dehydrogenation process for HzOR.  相似文献   

10.
Utilizing supramolecular synthetic macrocycles with distinct porous structures and abundant functional groups as a precursor for metal-doped carbon electrocatalysts can endow the resulting materials with great potential in electrocatalysis. Herein, iridium-doped electrocatalysts (CBC-Ir), using a synthetic macrocycle named cucurbit[6]uril as the carbon source precursor, are designed and prepared. Interestingly, owing to the numerous N-containing backbone and unique porous structure from cucurbit[6]uril self-assembly, the newly designed catalysts CBC-Ir possess abundant N-doped and mesoporous structures without the need of additional N sources and templates. The catalysts exhibit superior catalytic performance toward the hydrogen evolution reaction with high Faradaic efficiency (91.5% and 92.7%), superior turnover frequency (2.1 and 0.69 H2 s−1) at the 50 mV overpotential, and only 17 and 33 mV overpotentials in acidic and alkaline conditions reaching the current density of 10 mA cm−2, better than the commercial Pt/C (28 and 43 mV). This work not only expands the application of supramolecular macrocycles in the water splitting field but also provides a new approach for preparing robust electrocatalysts.  相似文献   

11.
Realizing rapid transformation of hydroxide to high-active oxyhydroxide species in layered double hydroxide (LDH) catalyst plays a significant role in enhancing its activity toward oxygen evolution reaction (OER) for hydrogen production from water. Here, a scalable strategy is developed to synthesize defect-rich few-layered NiFe-LDH nanosheets (f-NiFe-LDH-B) with in situ borate modified for boosted and stable OER due to that the borate can narrow the bandgap for Ni sites to realize a more conductive electronic structure. Besides, the adsorbed borate can tune the d band center of Ni sites to promote of hydroxide transformation and facilitate the adsorption of the OER intermediates. The f-NiFe-LDH-B catalyst, therefore, requires only 209 and 249 mV overpotential to deliver 10 and 100 mA cm−2 OER, respectively, with a Tafel slope of 43.5 mV dec−1. Moreover, only 1.8 V cell voltage is required to reach Ampere-level overall water splitting for 500 h at room temperature.  相似文献   

12.
The rational design of effective catalysts for sluggish oxygen evolution reactions (OERs) is desired but challenging. Nickel-iron (NiFe) (oxy)hydroxides are promising pre-electrocatalysts for alkaline OER. However, OER performances are limited by the slow reconstruction process to generate active species of high-valance NiFe oxyhydroxides. In this work, a sulfate ion (SO42−) modulated strategy is developed to boost the OER activity of NiFe (oxy)hydroxide by accelerating the electrochemical reconstruction of pre-catalyst and stabilizing the reaction intermediate of OOH* during OER. The SO42− decorated NiFe (oxy)hydroxide catalyst (NF-S0.15) is fabricated via scalable anodization of NiFe foam in a thiourea-dissolved electrolyte. The experimental and theoretical investigations demonstrate the dual effect of SO42− on improving OER performances. SO42− leaching is favorable for the electrochemical reconstruction to form active NiFeOOH under OER condition. Simultaneously, the residual SO42− adsorbed on surface can stabilize the intermediate of OOH*, and thus enhance the OER performances. As expected, NF-S0.15 delivers an ultralow overpotential of 234 mV to reach the current density of 50 mA cm−2, a fast OER kinetics (27.7 mV dec−1), and a high stability for more than 100 h. This unique insights into anionic modification could inspire the development of advanced electrocatalysts for efficient OER.  相似文献   

13.
A recent approach for solar‐to‐hydrogen generation has been water electrolysis using efficient, stable, and inexpensive bifunctional electrocatalysts within strong electrolytes. Herein, the direct growth of 1D NiCo2S4 nanowire (NW) arrays on a 3D Ni foam (NF) is described. This NiCo2S4 NW/NF array functions as an efficient bifunctional electrocatalyst for overall water splitting with excellent activity and stability. The 3D‐Ni foam facilitates the directional growth, exposing more active sites of the catalyst for electrochemical reactions at the electrode–electrolyte interface. The binder‐free, self‐made NiCo2S4 NW/NF electrode delivers a hydrogen production current density of 10 mA cm–2 at an overpotential of 260 mV for the oxygen evolution reaction and at 210 mV (versus a reversible hydrogen electrode) for the hydrogen evolution reaction in 1 m KOH. This highly active and stable bifunctional electrocatalyst enables the preparation of an alkaline water electrolyzer that could deliver 10 mA cm–2 under a cell voltage of 1.63 V. Because the nonprecious‐metal NiCo2S4 NW/NF foam‐based electrodes afford the vigorous and continuous evolution of both H2 and O2 at 1.68 V, generated using a solar panel, they appear to be promising water splitting devices for large‐scale solar‐to‐hydrogen generation.  相似文献   

14.
For the practical use of water electrolyzers using non-noble metal catalysts, it is crucial to minimize the overpotentials for the hydrogen and oxygen evolution reactions. Here, cotton-based, highly porous electrocatalytic electrodes are introduced with extremely low overpotentials and fast reaction kinetics using metal nanoparticle assembly-driven electroplating. Hydrophobic metal nanoparticles are layer-by-layer assembled with small-molecule linkers onto cotton fibrils to form the conductive seeds for effective electroplating of non-noble metal electrocatalysts. This approach converts insulating cottons to highly electrocatalytic textiles while maintaining their intrinsic 3D porous structure with extremely large surface area without metal agglomerations. To prepare hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) electrodes, Ni is first electroplated onto the conductive cotton textile (HER electrode), and NiFe is subsequently electroplated onto the Ni–electroplated textile (OER electrode). The resulting HER and OER electrodes exhibit remarkably low overpotentials of 12 mV at 10 mA cm−2 and 214 mV at 50 mA cm−2, respectively. The two-electrode water electrolyzer exhibits a current density of 10 mA cm−2 at a low cell voltage of 1.39 V. Additionally, the operational stability of the device is well maintained even at an extremely high current density of 1 A cm−2 for at least 100 h.  相似文献   

15.
Nickel-based electrocatalysts are promising candidates for oxygen evolution reaction (OER) but suffer from high activation overpotentials. Herein, in situ structural reconstruction of V-doped Ni2P pre-catalyst to form highly active NiV oxyhydroxides for OER is reported, during which the partial dissolution of V creates a disordered Ni structure with an enlarged electrochemical surface area. Operando electrochemical impedance spectroscopy reveals that the synergistic interaction between the Ni hosts and the remaining V dopants can regulate the electronic structure of NiV oxyhydroxides, which leads to enhanced kinetics for the adsorption of *OH and deprotonation of *OOH intermediates. Raman spectroscopy and X-ray absorption spectroscopy further demonstrate that the increased content of active β-NiOOH phase with the disordered Ni active sites contributes to OER activity enhancement. Density functional theory calculations verify that the V dopants facilitate the generation of *O intermediates during OER, which is the rate-determining step for realizing efficient O2 evolution. Optimization of these properties endows the NiV oxyhydroxide electrode with a low overpotential of 221 mV to deliver a current density of 10 mA cm−2 and excellent stability in the alkaline electrolyte.  相似文献   

16.
The construction of a novel 3D self‐supported integrated NixCo2?xP@NC (0 < x < 2) nanowall array (NA) on Ni foam (NF) electrode constituting highly dispersed NixCo2?xP nanoparticles, nanorods, nanocapsules, and nanodendrites embedded in N‐doped carbon (NC) NA grown on NF is reported. Benefiting from the collective effects of special morphological and structural design and electronic structure engineering, the NixCo2?xP@NC NA/NF electrodes exhibit superior electrocatalytic performance for water splitting with an excellent stability in a wide pH range. The optimal NiCoP@NC NA/NF electrode exhibits the best hydrogen evolution reaction (HER) activity in acidic solution so far, attaining a current density of 10 mA cm?2 at an overpotential of 34 mV. Moreover, the electrode manifests remarkable performances toward both HER and oxygen evolution reaction in alkaline medium with only small overpotentials of 37 mV at 10 mA cm?2 and 305 mV at 50 mA cm?2, respectively. Most importantly, when coupling with the NiCoP@NC NA/NF electrode for overall water splitting, an alkali electrolyzer delivers a current density of 20 mA cm?2 at a very low cell voltage of ≈1.56 V. In addition, the NiCoP@NC NA/NF electrode has outstanding long‐term durability at j = 10 mA cm?2 with a negligible degradation in current density over 22 h in both acidic and alkaline media.  相似文献   

17.
The design of cheap, efficient, and durable electrocatalysts for high-throughput H2 production is critical to give impetus to hydrogen production from fundamental to practical industrial applications. Here, a hierarchical heterostructure hydrogen evolution reaction (HER) electrocatalyst (MoNi/NiMoOx) with 0D MoNi nanoalloys nanoparticles embedded on well-assembled 1D porous NiMoOx microrods in situ grown on 3D nickel foam (NF) is successfully constructed. The synergetic effect of different building units in the unique hierarchical structure endows the MoNi/NiMoOx composites with the highly active heterogeneous interface with low water dissociation energy (ΔGdiss = −1.2 eV) and optimized hydrogen adsorption ability (ΔGH* = −0.01 eV), fast electron/mass transport, and strong catalyst-support binding force. As a result, optimal MoNi/NiMoOx exhibits an ampere-level current density of 1.9 A cm−2 at an ultralow overpotential of 139 mV in 1.0 м KOH and 289 mV in 1.0 м PBS solution, respectively. Particularly, scaled-up MoNi/NiMoOx electrodes in a 10 × 10 cm2 membrane electrode assembly (MEA) electrolyzer reach a high H2 production rate of 12.12 L h−1 (12.12 times than that of commercial NF) and exhibit ultralong stability of 1600 h, verifying its huge potential for industrial hydrogen production.  相似文献   

18.
Electrochemical hydrogen evolution reaction (HER) with cost-effectiveness, high performance, and repeatable scale-up production hold promises for large-scale green hydrogen generation technology. Herein, a convenient method for scaling up Cu2S@NiS@Ni/NiMo electrocatalysts on Cu foam with high geometric area over 100 cm2 is presented. The hybrid electrode exhibits high hydrogen evolution activity with 190 and 250 mV overpotential at 1000 mA cm−2 and superior stability with negligible overpotential loss after over 2000 h at 500 mA cm−2 under steady-state conditions in both artificial seawater and real seawater. Detailed characterizations and simulations demonstrate that high intrinsic activity resulting from the unique boundary interface, enhance mass transport resulting from superaerophobic nanoarray architecture, and corrosion resistance resulting from polyanion-rich passivating layers together lead to the outstanding performance. The practicability is also demonstrated in an alkaline seawater electrolyzer coupling with the hybrid electrode and stable commercial anode.  相似文献   

19.
Modulating the morphology and chemical composition is an efficient strategy to enhance the catalytic activity for water splitting, since it is still a great challenge to develop a bifunctional catalyst for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) over a wide pH range. Herein, Pd/NiFeOx nanosheets are synthesized with tightly arranged petal nanosheets and uniform mesoporous structure on nickel foam (NF). The porous 2D structure yields a larger surface area and exposes more active sites, facilitating water splitting at all pH values. The overpotential of Pd/NiFeOx nanosheets for OER is only 180, 169, and 310 mV in 1 m KOH, 0.5 m H2SO4, and 1 m phosphate-buffered saline (PBS) conditions at 10 mA cm−2 current density, as well as excellent HER activity with ultralow overpotential in a wide pH range. When using porous Pd/NiFeOx nanosheets as bifunctional catalysts for water splitting, it just required a cell voltage of 1.57 V to reach a current density of 20 mA cm−2 with nearly 100% faradic efficiency in alkaline conditions, which is much lower than that of benchmark Pt/CǁRuO2 (1.76 V) couples, along with the improving stability benefiting from the good corrosion resistance of the inner NiFeOx nanosheets.  相似文献   

20.
A 3D hierarchical porous catalyst architecture based on earth abundant metals Ni, Fe, and Co has been fabricated through a facile hydrothermal and electrodeposition method for efficient oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). The electrode is comprised of three levels of porous structures including the bottom supermacroporous Ni foam (≈500 μm) substrate, the intermediate layer of vertically aligned macroporous NiCo2O4 nanoflakes (≈500 nm), and the topmost NiFe(oxy)hydroxide mesoporous nanosheets (≈5 nm). This hierarchical architecture is binder‐free and beneficial for exposing catalytic active sites, enhancing mass transport and accelerating dissipation of gases generated during water electrolysis. Serving as an anode catalyst, the designed hierarchical electrode displays excellent OER catalytic activity with an overpotential of 340 mV to achieve a high current density of 1200 mA cm?2. Serving as a cathode catalyst, the catalyst exhibits excellent performance toward HER with a moderate overpotential of 105 mV to deliver a current density of 10 mA cm?2. Serving as both anode and cathode catalysts in a two‐electrode water electrolysis system, the designed electrode only requires a potential of 1.67 V to deliver a current density of 10 mA cm?2 and exhibits excellent durability in prolonged bulk alkaline water electrolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号