首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
Novel Cu2O/Pt/TiO2 three-layered nanocomposite films were prepared by deposition on glass substrates using the magnetron sputtering method. Their structure, surface morphology as well as optical and photocatalytic properties were examined by X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, UV–visible spectroscopy, and photoluminescence spectroscopy. As a comparison, Cu2O/TiO2 double-layer films were also investigated. The results show that Cu2O/TiO2 double-layer films have relatively smooth surfaces with agglomerated Cu2O particle, whereas the surface layer of the Cu2O/Pt/TiO2 three-layered nanocomposite films was composed of fine nano-sized columnar Cu2O and they had a rough surface morphology due to the insertion of the Pt layer. The photocatalytic activity of the three-layered films is significantly higher than that of the Cu2O/TiO2 double-layered composite films. Such enhancement is closely related to the presence of the Pt layer and the rough surface, which was composed of fine nano-sized Cu2O columns; this increases the utilization of visible light as well as promotes the transfer of interfacial charge and the separation of photogenerated electron–holes.  相似文献   

2.
Titanium dioxide (TiO2) thin films were successfully prepared on quartz substrate by thermal oxidation of sputtered titanium film in air. The structure, composition, morphology and optical properties of oxidized TiO2 films were characterized by Raman spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, atomic force microscopy and UV-visible spectroscopy. Meanwhile, the photocatalytic activity of the films was evaluated on the basis of the degradation of methyl orange solution under UV irradiation. Ti films after oxidation present mainly in TiO2 form with a larger amount of adsorbed O2, and oxidation temperature has a strong impact on the crystal structure and properties of the films. A phase transformation of anatase to rutile for oxidized TiO2 films occurred in the temperature range of 700–800 °C. The energy band gap of oxidized TiO2 films decreased first and then increased with annealing temperature. Furthermore, TiO2 film oxidized at 600 °C exhibited the best photocatalytic activity due to suitable crystal phase and size. These results might contribute to the synthesis of metal oxide thin films with expectant structural morphology and properties by thermal oxidation methods.  相似文献   

3.
Novel copper-doped titanium dioxide (Cu-doped TiO2) thin films on silver (Ag) substrates with different thicknesses were prepared by sol–gel and magnetron sputtering methods. The influences of the Ag substrate thickness on the morphology and performance of the films were investigated by X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, photoluminescence spectroscopy, UV–visible spectroscopy, and photocatalytic degradation testing with methylene blue aqueous solution under visible light irradiation. The results indicated that Ag substrates with an optimal thickness of 30 nm not only maintained the tiny nanocrystals but also greatly improved dispersion of the nanoparticles on the surface of the nanofilms. Furthermore, during the calcination process, part of the Ag atoms diffused from the substrates into the Cu–TiO2 films and substituted for the Cu ions to form Ag–TiO2. A proper Ag substrate thickness (30 nm) greatly improved the photocatalytic properties of TiO2 with photocatalytic efficiency, reaching approximately 86% in 300 minutes under visible light irradiation. However, an excess of Ag substrate not only led to the Cu ion separating out in the form of CuO but also resulted in the agglomeration of TiO2 particles on the surface, which were detrimental to photocatalytic activities.  相似文献   

4.
A novel scaffold layer composed of TiO2-ZrO2 composite was fabricated for perovskite solar cell. Compared with pure TiO2 nanoparticles (NPs), the relatively larger ZrO2 NPs could increase film roughness and enhance light-scattering effect in TiO2-ZrO2 composite films. The device exhibited outstanding power conversion efficiency (PCE) of 11.41%. The morphology and aggregation of particles, three-dimensional roughness, as well as the ingredient and micro-structure of FTO/compact TiO2/TiO2-ZrO2 was investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscope (AFM), energy dispersive spectrometer (EDS), and X-ray diffraction (XRD), respectively. Moreover, the optical property of TiO2-ZrO2 films for visible light was characterized by UV–visible absorption spectroscopy (UV–vis), and its influence on quantum yield of the device was further demonstrated by incident photon-to-electron conversion efficiency (IPCE). Owing to the inert oxide, the short-circuit current density of perovskite solar cell using TiO2-ZrO2 composition as scaffold layer increased by 21% compared to the one employing pure TiO2 mesoporous film.  相似文献   

5.
The visible light active Ce/F codoped TiO2–ZnO composite films with a bad gap of 1.82 eV were successfully prepared though a simple sol–gel method. Experimental results indicated that the composite films showed excellent photocatalytic performance towards photocatalytic oxidation of organic pollutants including formaldehyde, acid naphthol red (ANR) and methyl green (MG). The catalysts were characterized by photoluminescence (PL) spectra, UV–vis diffraction reflectance absorption spectra (DRS), X-ray diffraction (XRD), differential thermal analysis-thermogravimetry (DTA-TG), field emission scanning electron microscopy (FE-SEM) equipped with energy-dispersive spectroscopy (EDS), and N2 adsorption/desorption isotherms. The DRS and PL spectra results showed that multi-modification not only induced strong visible light absorption but also reduced the recombination rate of electron–hole pairs. The DTA-TG and XRD results indicated that the crystal type of the TiO2-based catalyst was mostly stabilized in anatase. The FE-SEM and BET surface area results revealed that the nanocrystalline Ce/F codoped TiO2–ZnO composite samples with the larger specific surface area were composed of smaller nanoparticles compared to pure TiO2. The mechanism of the enhanced photocatalytic activity was discussed in this study.  相似文献   

6.
SiO2 and TiO2 thin films with gold nanoparticles (NPs) are of particular interest as photovoltaic materials. A novel method for the preparation of spin‐coated SiO2–Au and TiO2–Au nanocomposites is presented. This fast and inexpensive method, which includes three separate stages, is based on the in situ synthesis of both the metal‐oxide matrix and the Au NPs during a baking process at relatively low temperature. It allows the formation of nanocomposite thin films with a higher concentration of Au NPs than other methods. High‐resolution transmission electron microscopy studies revealed a homogeneous distribution of NPs over the film volume along with their narrow size distribution. The optical manifestation of localized surface plasmon resonance was studied in more detail for TiO2‐based Au‐doped nanocomposite films deposited on glass (in absorption and transmittance) and silicon (in specular reflectance). Maxwell–Garnett effective‐medium theory applied to such metal‐doped nanocomposite films describes the peculiarities of the experimental spectra, including modification of the antireflective properties of bare TiO2 films deposited on silicon by varying the concentration of metal NPs. The antireflective capabilities of the film are increased after a wet etching process.  相似文献   

7.
Pd co-doped TiO2–SO42– photocatalyst was synthesized by sol–gel, photodeposition methods and characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), diffuse reflectance spectroscopy (DRS), photoluminescence (PL) and BET surface area measurements. Elements present in the catalyst are shown by X-ray photoelectron spectroscopy. X-ray diffraction analysis reveals that the photocatalyst has an anatase structure. Sulfation by sulfuric acid reduces agglomeration, inhibits the phase transformation and enhances the stability of TiO2. The solar photocatalytic activity of the Pd–TiO2–SO42– is higher than that of the TiO2–P25, Pd–TiO2, bare TiO2 and TiO2–SO42– at pH 7 for the mineralization of Reactive Red 120. The modification of palladium shows higher adsorption with synergistic effect and also enhances the separation of photogenerated electron–hole pairs, leading to higher photodegradation efficiency. The effects of operational parameters such as the amount of photocatalyst, initial pH on photo mineralization have been analyzed. A dual mechanism of degradation by Pd–TiO2–SO42– is proposed to explain its higher activity in solar light. The mineralization of Reactive Red 120 has also been confirmed by CV and COD measurements. The catalyst is found to be stable and reusable. Based on the degradation intermediates identified by GC–MS analysis, a reaction pathway is proposed.  相似文献   

8.
Multistep hydrothermal (MSH) process is employed for growth of TiO2 nanocorals onto the conducting fluorine‐doped tin oxide‐coated glass substrates. The surface morphological features and physical properties of TiO2 films were investigated by field emission scanning electron microscopy, high resolution transmission electron microscopy, X‐ray diffraction, Fourier transform infrared spectroscopy, Fourier transform Raman spectroscopy, room temperature photoluminescence spectroscopy and X‐ray photoelectron spectroscopy. The surface morphology revealed the formation of TiO2 corals having nanosized (30–40 nm) polyps. The photoelectrochemical properties of the TiO2 nanocoral electrodes were investigated in 0.1 M NaOH electrolyte under ultraviolet illumination. The results presented in this study highlight two major findings: (i) tuning the photoelectrochemical response and photoconversion efficiency via controlled thickness of TiO2 nanocorals by MSH route and (ii) the substantial increase in short‐circuit photocurrent (Jsc) because of the improved charge transport through TiO2 nanocorals prepared via MSH process. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
The nanocomposite thin films of titanium dioxide (TiO2)–lead phthalocyanine (PbPc) have been prepared on glass substrates by the electron beam evaporation technique. The optical properties of TiO2/PbPc nanocomposite thin films have been investigated using a spectrophotometric measurement of the absorbance and transmittance at normal incident of light in the wavelength region 300–800 nm. Surface morphology of thin films has been characterized using field emission scanning electron microscopy (FESEM). The UV–vis analysis has been performed to determine the type of electronic transition and the optical energy band gap. The analysis of the spectral behavior of the absorption coefficient in the intrinsic absorption region reveals that the absorption mechanism is due to direct transition. Moreover, by studying the absorption coefficient spectra just below the fundamental absorption edge, the width of band tails of localized states (Urbach energy), steepness parameter and width of the defect states have been evaluated. The obtained results of this novel nanocomposite (TiO2/PbPc) support the desirable features for the optoelectronic devices.  相似文献   

10.
Three different strong acid catalysts were used in a simple sol–gel synthesis to produce TiO2 thin films with increased homogeneity and enhanced photocatalytic activity on their mesoporous surfaces. Various techniques were used to characterize the samples, including UV–visible spectrophotometry, X-ray diffraction, micro-Raman spectrometry, photobleaching, scanning electron microscopy, transmission electron microscopy and high-resolution transmission electron microscopy. The band gaps varied from 3.73 to 3.75 eV and the transmittance was >80%. An anatase phase was obtained in all the samples and the crystal size varied from 20 to 45 nm as a function of the annealing temperature. The increase in the efficiency of the surface of the TiO2 thin films was evaluated by photodegradation of methylene blue in water. The results showed that the acid catalysts used in the synthesis had an important effect on the morphology and photocatalytic activity of the thin films, resulting in more efficient surfaces. Synthesis with hydrofluoric acid produced thin films with a homogenous mesoporous structure and improved the photodegradation of the methylene blue dye to 92% in 2.5 h.  相似文献   

11.
Environment friendly and efficient strategy for the preparation of titanium dioxide (TiO2)–graphene (GR) based hybrid nanocomposite has been demonstrated by simple chemical approach for the photodegradation of Acid Orange 7 (AO7) dye under solar irradiation. The resultant nanocomposite structure and composition has been characterized by Ultraviolet Diffusive Reflectance Spectroscopy (UV-DRS), Fourier Transform Infrared Spectroscopy (FTIR), Thermogravimetric Analysis (TGA), Raman spectroscopy and X-ray diffraction (XRD) studies. The incorporation of TiO2 nanoparticles on the surface of GR was confirmed by High Resolution Transmission Electron Microscopy (HRTEM) and Field Emission Scanning Electron Microscopy (FESEM) studies. Electrochemical Impedance spectroscopy (EIS) and Cyclicvoltammetry (CV) studies revealed that the incorporation of GR with TiO2 nanoparticles significantly enhanced the redox property and electrical conductivity. During photocatalysis, the TiO2–GR nanocomposites have high photocatalytic activity compared with that of TiO2 towards AO7 dye degradation under solar light irradiation. The enhanced photocatalytic activity might be attributed to the role GR played as an electron acceptor and transporter in the composite film, which effectively suppressed the charge recombination and promoted the charge transfer within the composite.  相似文献   

12.
TiO2–metal vanadate nanocomposites (TiO2–MV) were synthesized by the precipitation method and successfully characterized using UV–visible diffuse reflectance spectroscopy (UV–vis-DRS), powder X-ray diffraction (XRD), photoluminescence (PL) spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDX) techniques. The photocatalytic activity of TiO2–MV was investigated for the degradation of fast green (FG) dye under visible light irradiation. The photocatalytic activity of TiO2–silver vanadate [TiO2–Ag3VO4] was found to be much higher than that of TiO2–cadmium vanadate [TiO2–CdV2O6], TiO2–strontium vanadate [TiO2–Sr3(VO4)2] and TiO2. The effect of operational parameters such as pH, photocatalyst concentration and initial dye concentration on the photodegradation of FG was examined in detail. The mineralization of FG was confirmed by chemical oxygen demand (COD) and total organic carbon (TOC) measurements. Moreover, TiO2–Ag3VO4 was found to be a reusable photocatalyst.  相似文献   

13.
Device characteristics of TiO2 gate dielectrics deposited by a sol-gel method and DC sputtering method on a P-type silicon wafer are reported. Metal-oxide-semiconductor capacitors with Al as the top electrode were fabricated to study the electrical properties of TiO2 films. The films were physically characterized by using X-ray diffraction, a capacitor voltage measurement, scanning electron microscopy, and by spectroscopy ellipsometry. The XRD and DST-TG indicate the presence of an anatase TiO2 phase in the film. Films deposited at higher temperatures showed better crystallinity. The dielectric constant calculated using the capacitance voltage measurement was found to be 18 and 73 for sputtering and sol-gel samples respectively. The refractive indices of the films were found to be 2.16 for sputtering and 2.42 for sol-gel samples.  相似文献   

14.
TiO2‐Ag nanocomposites are known for their bactericidal effect during exposure to appropriate UV radiation. While involving hazardous radiation, and limited to accessible areas, the bactericidity of these coatings is not persistent in the absence of UV light, which impedes their commercial application. Herein it is shown that TiO2‐Ag nanocomposites can be made highly bactericidal without the need of irradiation. Beyond this, bactericidity can even be mitigated in the presence of pre‐irradiated coatings. Biocompatibility and cell adhesion are also negligibly small for the as‐processed, non‐irradiated coatings, and become fairly high when the coatings are irradiated prior to testing. This opens the possibility to pattern the coatings into areas with high and low cell adhesion properties. Indeed by irradiating the coating through a mechanical mask it is shown that fibroblast cell adherence is sharply confined to the irradiated area. These properties are achieved using TiO2‐Ag thin films with high silver loadings of 50 wt%. The films are processed on stainless steel substrates using solution deposition. Microstructural characterization by means of X‐ray diffraction, Raman, and X‐ray photoelectron spectroscopy, high‐resolution scanning electron microscopy, and atomic force microscopy show a highly amorphous TiO2‐AgxO nanocomposite matrix with scattered silver nanoparticles. UV irradiation of the films results in the precipitation of a high density of silver nanoparticles at the film surface. Bactericidal properties of the films are tested on α‐haemolyzing streptococci and in‐vitro biocompatibility is assessed on primary human fibroblast cultures. The results mentioned above as to the tunable bactericidity and biocompatibility of the TiO2‐Ag coatings developed herein, are amenable to silver ion release, to catalytic effects of silver nanoparticles, and to specific wettabilities of the surfaces.  相似文献   

15.
An energy‐economical dye‐sensitized solar cell (DSSC) with highly flexible Ti/TiO2 photoanode was developed through a low‐temperature process, using a binder‐free TiO2 paste. Ti foils, coated with the binder‐free TiO2 films were annealed at various temperature. Scanning electron microscopic (SEM) images of the films show uniform, mesoporous and crack‐free surface morphologies as well as interpenetrated TiO2 network. DSSCs with binder‐free TiO2 films annealed at 450, 350, 250 and 120°C show solar‐to‐electricity conversion efficiencies (η) of 4.33, 4.34, 3.72 and 3.40%, respectively, which are comparable to the efficiency of 4.56% obtained by using a paste with binder and annealing it at 450°C; this observation demonstrates the benefits of a binder‐free TiO2 paste for the fabrication of energy‐fugal DSSCs. On the other hand, when organic binder was used in the TiO2 paste for film preparation, a drastic deterioration in the cell performance with decreasing annealing temperature is noticed. Laser‐induced photo‐voltage transient technique is used to estimate the electron lifetime in various Ti/TiO2 films. Electrochemical impedance spectroscopic (EIS) analysis shows that the lower the annealing temperature of the TiO2 coated Ti foil, the larger the charge transfer resistance at the TiO2/dye/electrolyte interface (Rct2). Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
A facile method for preparation of Cr-doped TiO2 nanotubes (Cr–TiO2 NTs) modified with polyaniline (PANI) was developed. The obtained materials were analyzed with scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FT-IR) spectroscopy. The photoelectrochemical property of PANI/Cr–TiO2 nanotubes was studied by voltammetry, photocurrent and electrochemical impedance spectroscopy (EIS). Using PANI/Cr–TiO2 NTs as photoanode, the removal of p-nitrophenol (PNP) by photoelectrocatalytic oxidation technique was investigated. Compared with Cr–TiO2 NTs, PANI/Cr–TiO2 NTs showed an increased efficiency in the photoelectrocatalytic degradation of PNP. Moreover, photoelectrocatalysis was more efficient for PNP degradation than electrochemical oxidation, direct photolysis, and photocatalysis. The influences of applied bias potential, initial concentration of PNP and solution pH on the photoelectrocatalytic degradation of PNP were investigated. Under optimized conditions, almost all PNP could be degraded on PANI/Cr–TiO2 NTs after 2-h photoelectrocatalytic treatment.  相似文献   

17.
Crossbar‐type bipolar resistive memory devices based on low‐temperature amorphous TiO2 (a‐TiO2) thin films are very promising devices for flexible nonvolatile memory applications. However, stable bipolar resistive switching from amorphous TiO2 thin films has only been achieved for Al metal electrodes that can have severe problems like electromigration and breakdown in real applications and can be a limiting factor for novel applications like transparent electronics. Here, amorphous TiO2‐based resistive random access memory devices are presented that universally work for any configuration of metal electrodes via engineering the top and bottom interface domains. Both by inserting an ultrathin metal layer in the top interface region and by incorporating a thin blocking layer in the bottom interface, more enhanced resistance switching and superior endurance performance can be realized. Using high‐resolution transmission electron microscopy, point energy dispersive spectroscopy, and energy‐filtering transmission electron microscopy, it is demonstrated that the stable bipolar resistive switching in metal/a‐TiO2/metal RRAM devices is attributed to both interface domains: the top interface domain with mobile oxygen ions and the bottom interface domain for its protection against an electrical breakdown.  相似文献   

18.
Zinc phthalocyanine modified TiO2 nanoparticles (Znpc–TiO2) were prepared by the chemical impregnation method to improve the photocatalytic activity of TiO2 under visible light. The prepared nanoparticles were characterized by UV–vis diffuse reflectance spectroscopy (UV–vis-DRS), X-ray powder diffraction, scanning electron microscopy transmission electron microscopy and Brunauer-Emmett-Teller. surface area analysis techniques. The photocatalytic activity of Znpc–TiO2 was investigated for the degradation of erythromycin. The results revealed that UV–vis absorption edge of Znpc–TiO2 is slightly shifted towards visible region and it has a higher surface area than that of TiO2. The photocatalytic activity of Znpc–TiO2 was superior (74.21%) than that of TiO2 (31.57%). Besides the photocatalyst (Znpc–TiO2) is stable and may be reused for several times.  相似文献   

19.
In this paper, we compare the physical and electrical properties of metal oxide–high-κ oxide–silicon (MOHOS)-type devices using Dy2O3 and Dy2TiO5 films as charge-trapping layers. X-ray diffraction and x-ray photoelectron spectroscopy revealed the structural and compositional features of these films after annealing at various temperatures. MOHOS memory devices incorporating the Dy2TiO5 trapping layer that had been annealed at 800°C exhibited a larger memory window of ~2.91 V (measured at a sweep voltage range of ±9 V), higher flatband voltage shift of 2 V (programming voltage at 9 V for 0.1 s), and smaller charge loss of ~10% (measured at room temperature after 104 s), relative to those of the systems that had been subjected to other annealing conditions. This result suggests that the Dy2TiO5 film featuring a higher dielectric constant as well as a thinner silicate layer provides a higher probability of charge carrier trapping and deeper electron trapping levels. In addition, the centroid of trapped charge in the Dy2TiO5 layer was extracted by the constant current stress method and compared with that of the Dy2O3 layer.  相似文献   

20.
BaTiO3 thin films were deposited onto quartz substrates by an RF magnetron sputtering method. The films deposited at room temperature and annealed at 773–1173 K were characterized using X-ray diffraction (XRD)Scanning electron microscopy (SEM), UV–vis spectroscopy and Photoluminescence spectroscopy (PL). X-ray diffraction studies revealed that the film is amorphous in nature at 773 K and that the crystallinity increases with increase in annealing temperature. The average crystallite size of the films increased from 13–18 nm and the optical band gap decreased in the range of 4.33–3.43 eV, with increase in annealing temperature. The films exhibited good adherence to the substrates and the SEM images showed smooth surface morphology. Energy dispersive X-ray (EDX) analysis confirmed the presence of barium, titanium and oxygen in the film. The red-shifts of excitonic UV emission peaks were observed in all samples which can be attributed to the stress produced due to lattice distortions. The visible PL emission intensity showed appreciable enhancement with post-deposition annealing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号