首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Smart manipulation of liquid/bubble transport has garnered widespread attention due to its potential applications in many fields. Designing a responsive surface has emerged as an effective strategy for achieving controllable transport of liquids/bubbles. However, it is still challenging to fabricate stable amphibious responsive surfaces that can be used for the smart manipulation of liquid in air and bubbles underwater. Here, amphibious slippery surfaces are fabricated using magnetically responsive soft poly(dimethylsiloxane) doped with iron powder and silicone oil. The slippery gel surface retains its magnetic responsiveness and demonstrates strong affinity for bubbles underwater but shows small and switching resistance forces with the water droplets in air and bubbles underwater, which is the key factor for achieving the controllable transport of liquids/bubbles. On the slippery gel surface, the sliding behaviors of water droplets and bubbles can be reversibly controlled by alternately applying/removing an external magnetic field. Notably, compared with slippery liquid‐infused porous surfaces, the slippery gel surface demonstrates outstanding stability, whether in air or underwater, even after 100 cycles of alternately applying/removing the magnetic field. This surface shows potential applications in gas/liquid microreactors, gas–liquid mixed fluid transportation, bubble/droplet manipulation, etc.  相似文献   

2.
Droplet manipulation has gradually drawn worldwide attention through diverse potential applications such as microfluidics, and medical diagnostic test. Whereas, the high-precision liquid manipulation on an open surface that is under control at will is still a huge challenge, especially in 3D. Herein, the novel magnetic micropillars array (MMA) is developed for multi-dimensional droplet manipulation, depending on huge symmetric bending deformation under the low magnetic field. In situ observation demonstrated the droplet's behavior and the driving force acted on the droplet is derived from these micropillar's deformation. Two modes, that are, propelling mode and rolling mode are found in horizontal transport that determined by the relative position of crest and droplets and can be transported with excellent accuracy and rapidity. The recombination of the contact liquid between droplets and micropillars occurs in swinging to dynamically adjust the length of the three-phase contact line, which is the main reason for capture-release behavior. Theoretical models of multi-dimensional droplet manipulation are systematically established to demonstrate the underlying mechanism. Finally, several MMA-based operating platforms are built to validate its feasibility in accurate 3D droplet manipulation and exhibit great potential in chemical micro-reactions, bioassays, and the medical field.  相似文献   

3.
Driving a liquid droplet with control of directional motion on a solid surface, by introducing a surface wettability gradient or external stimuli, has attracted considerable research attention. There still remain challenges, however, due to the slow response rate and slow speed of continuous liquid droplet motion on the structured surface. Here, an approach to continuously drive the underwater oil droplet with control of directional motion by the cooperative effects of an electric field and the gradient of a porous polystyrene microstructure is demonstrated. The gradient microstructure induces the liquid droplet to take on an asymmetrical shape, causing unbalanced pressure on both ends to orient the droplet for motion in a particular direction. Meanwhile, the electric field decreases the contact area and the corresponding viscous drag between the droplet and the gradient‐structured surface. Then, the unbalanced pressure pushes the underwater oil droplet to move directionally and continuously at a certain voltage. This work provides a new strategy to control underwater oil droplets and realize unidirectional motion. It is also promising for the design of new smart interface materials for applications such as electrofluidic displays, biological cell and particle manipulation, and other types of microfluidic devices.  相似文献   

4.
Rice leaves can directionally shed water droplets along the longitudinal direction of the leaf. Inspired by the hierarchical structures of rice leaf surfaces, synthetic rice leaf‐like wavy surfaces are fabricated that display a tunable anisotropic wettability by using electrostatic layer‐by‐layer assembly on anisotropic microwrinkled substrates. The nanoscale roughness of the rice leaf‐like surfaces is controlled to yield tunable anisotropic wettability and hydrophobic properties that transitioned between the anisotropic/pinned, anisotropic/rollable, and isotropic/rollable water droplet behavior states. These remarkable changes result from discontinuities in the three‐phase (solid–liquid–gas) contact line due to the presence of air trapped beneath the liquid, which is controlled by the surface roughness of the hierarchical nanostructures. The mechanism underlying the directional water‐rolling properties of the rice leaf‐like surfaces provides insight into the development of a range of innovative applications that require control over directional flow.  相似文献   

5.
The biomimetic principle of harnessing topographical structures to determine liquid motion behavior represents a cutting‐edge direction in constructing green transportation systems without external energy input. Here, inspired by natural Nepenthes peristome, a novel anisotropic wettability surface with characteristic structural features of periodically aligned and overlapped arch‐shaped microcavities, formed by employing ferrofluid assemblies as dynamic templates, is presented. The magnetic strength and orientation are precisely adjustable during the generation process, and thus the size and inclination angle of the ferrofluid droplet templates could be tailored to make the surface morphology of the resultant polymer replica achieve a high degree of similarity to the natural peristome. The resultant anisotropic wettability surface enables autonomous unidirectional water transportation in a fast and continuous way. In addition, it could be tailored into arbitrary shapes to induce water flow along a specific curved path. More importantly, based on the anisotropic wettability surface, novel pump‐free microfluidic devices are constructed to implement multiphase flow reactions, which offer a promising solution to building low‐cost, portable platform for lab‐on‐a‐chip applications.  相似文献   

6.
Flexible smart surfaces with tunable wettability are promising for emerging wearable uses. However, currently, wearable superhydrophobic surfaces with dynamic wetting behaviors are rarely reported. Here, a skin‐like superhydrophobic elastomer surface with switchable lotus leaf and rose petal states is reported. Direct laser writing technique is employed for one‐step, programmable, large‐scale fabrication of monolithic and hierarchical micro‐nanostructures on elastomer, leading to strong water repellence. The surface topography can be finely regulated in a rapid and reversible manner by simple stretching, providing the feasibility of controlling the surface wettability by simple body motions. The ability to switch wetting states enables the surface to capture and release multiple droplets in parallel. Furthermore, the active surface can be applied to the joints of fingers and operate as a droplet manipulator under finger motions without requiring energy supply or external appliance. In this work, dynamic tuning of wetting properties is integrated into the design of skin‐like wearable surfaces, revealing great potential in versatile applications such as wearable droplet manipulator, portable actuator, adaptive adhesion control, liquid repellent skin, and smart clothing.  相似文献   

7.
A new type of armored droplet, a so‐called polyhedral liquid marble, is introduced in this work. These armored liquid marbles consist of liquid droplets stabilized by hydrophobic hexagonal plates made of poly(ethylene terephthalate), which adsorb to the liquid–air interface. Depending on the specific combination of plate size and droplet diameter, the plates self‐assemble into highly ordered hexagonally arranged domains. Even tetrahedral‐, pentahedral‐, and cube‐shaped liquid marbles composed of only 4 to 6 plates are demonstrated. During evaporation of the internal liquid, due to the high adsorption energy of the plates at the liquid–air interface, the overall surface area stays constant, resulting in strongly deformed polyhedral liquid marbles. In line with this, highly asymmetric polyhedral liquid marbles and letters are obtained due to the strong interfacial jamming exerted by the rigid hexagonal plates. This is particularly pronounced for larger plate sizes, leading to liquid marbles with unusually sharp edges (for example, rectangular edges). The polyhedral liquid marbles exhibit various stimuli‐responsive behaviors simultaneously being exposed to water, ammonia, or tetrahydrofuran vapors. Air‐driven polyhedral liquid marbles floating on water can reach velocities of several centimeters per second.  相似文献   

8.
Magnetic fields enable dexterous, precise, and real-time control of ferromagnetic materials. However, most materials, including glasses, organics, and metals, are nonmagnetic and often do not respond to a magnetic field. Here, a transitional ferrofluid (TF) made by embedding magnetic iron particles into pure gallium through the treatment of highly concentrated HCl solutions, as well as its switchable interlocking force to objects during the phase change, is introduced to achieve magnetic manipulation of non-magnetic objects. A gripper made by liquid TF enables intimate contact with arbitrarily shaped objects and then generates a strong interlocking force of as high as 1168 N (using only 10 g TF) upon solidification at room temperature, which can be reversibly eliminated (F < 0.01 N) through melting. Owing to electrical conductivity and magnetism, a solid TF can be melted through electromagnetic induction heating. By coupling the switchable physical force during the phase transition and magnetism of TF, embedded non-magnetic objects can be manipulated using an applied magnetic field and become impervious to magnetic stimuli again after heating and releasing the TF. This study is expected to inspire numerous potential applications in the reversible magnetic actuation of soft robotics, remote operation systems, drug delivery, and liquid grippers.  相似文献   

9.
A novel interfacially active and magnetically responsive nanoparticle is designed and prepared by direct grafting of bromoesterified ethyl cellulose (EC‐Br) onto the surface of amino‐functionalized magnetite (Fe3O4) nanoparticles. Due to its strong interfacial activity, ethyl cellulose (EC) on the magnetic nanoparticles enables the EC‐grafted Fe3O4 (M‐EC) nanoparticles to be interfacially active. The grafting of interfacially active polymer EC on magnetic nanoparticles is confirmed by zeta‐potential measurements, diffuse reflectance infrared Fourier‐transform spectroscopic (DRIFTS) characterization, and thermogravimetric analysis (TGA). Scanning electron microscopy (SEM) images show a negligible increase in particle size, confirming the thin silica coating and grafted EC layer. The magnetization measurements show a marginal reduction in saturation magnetization by silica coating and EC grafting of original magnetic nanoparticles, confirming the presence of coatings. The M‐EC nanoparticles prepared in this study show excellent interfacial activity and highly ordered features at the oil/water interface, as confirmed using the Langmuir–Blodgett technique and atomic force microscopy (AFM). The magnetic properties of M‐EC nanoparticles at the oil/water interface make the interfacial properties tunable by or responsive to an external magnetic field. The occupancy of M‐EC at the oil/water interface allows rapid separation of the water droplets from emulsions by an external magnetic field, demonstrating enhanced coalescence of magnetically tagged stable water droplets and a reduced overall volume fraction of the sludge.  相似文献   

10.
Electrowetting (EW)-induced droplet motion has been studied over the last decade in view of its promising applications in the field of microfluidics. The objective of the present work is to analyze the physics underlying two specific EW-based applications for microelectronics thermal management. The first of these involves heat absorption by liquid droplets moving on the surface of a chip under EW actuation. Droplet motion between two flat plates under the influence of an electrowetting voltage is analyzed. An energy minimization framework is employed to predict the actuation force on a droplet. This framework, in combination with semi-analytical models for the forces opposing droplet motion, is used to develop a model that predicts transient EW-induced droplet motion. The second application is targeted at hot-spot thermal management and relies on the control of droplet states on artificially structured surfaces through an applied EW voltage. The influence of an electrowetting voltage in determining and altering the state of a static droplet resting on a rough surface is analyzed. An energy minimization-based modeling approach reveals the influence of interfacial energies, surface roughness parameters and electric fields in determining the apparent contact angle of a droplet in the Cassie and Wenzel states under the influence of an EW voltage. The model is used to establish preliminary criteria to design rough surfaces for use in the hot-spot mitigation application. The concept of an electrically tunable thermal resistance switch for hot-spot cooling applications is introduced and analyzed.  相似文献   

11.
水滴激光辐照效应研究现状   总被引:2,自引:0,他引:2  
受《水滴烧蚀激光推进性能测试[1],一文的启发,以激光与水滴相互作用在激光推进中的应用为背景,报道了国际领域内激光与水滴相互作用的实验和理论研究情况.指出了目前研究工作中存在的一些不足.为我国相关领域的研究提供了比较丰富的第一手参考资料.探讨了水滴烧蚀模式激光推进研究的广阔应用前景.  相似文献   

12.
Patterning of liquid metal (LM) is usually an integral step toward its practical applications. However, the high surface tension along with surface oxide makes direct patterning of LM very challenging. Existing LM patterning techniques are designed for limited types of planar substrates, which require multiple‐step operation, delicate molds and masks, and expensive equipment. In this work, a simple, versatile, and equipment‐free approach for direct patterning of LM on various substrates using magnetic field is reported. To achieve this, magnetic microparticles are dispersed into LM by stirring. When a moving magnetic field is applied to the LM droplet, the aggregated magnetic microparticles deform the droplet to a continuous line. In addition, this approach is also applicable to supermetallophobic substrates since the applied magnetic field significantly enhances the contact between LM and substrate. Moreover, remote manipulation of the magnetic microparticles allows direct patterning of LM on nonplanar surfaces, even in a narrow and near closed space, which is impossible for the existing techniques. A few applications are also demonstrated using the proposed technique for flexible electronics and wearable sensors.  相似文献   

13.
The phenomenon of controlled droplet transport has promising application prospects in various fields. Active droplet transport mode is controllable through continuous external stimuli. By contrast, self-transport is a more environmentally friendly and energy-efficient passive transport mode but lacks controllability. In this study, controlled self-transport is achieved by constructing a shape memory polymer (SMP) tube with a lubricated magnetic-responsive gel inner surface. The asymmetrical shape of the tube, combined with the lubricated inner surface, enables directional self-transport of droplets without external stimuli. Furthermore, the resistance on the inner gel surface can be altered by regulating the magnetic field to achieve effective active control during the self-transport process. Thus, smart in situ control of droplet transport can be achieved by integrating the macroscale shape variation of the tube with the dynamic control of the inner surface microstructure. Owing to the fast magnetic responsivity and in situ controllability of the self-transport process, the SMP lubricated tube demonstrates the ability to transport a variety of liquids and can be designed as a micro-reactor for step-by-step droplet detection. The findings of this study may provide guidance for the development of intelligent interface materials and microfluidic devices.  相似文献   

14.
Developing microrobots with multiple deformabilities has become extremely challenging due to the lack of materials that are soft enough at the microscale level and the inability to be reconfigured after fabrication. In this study, it is aimed to prove that liquid microrobots composed of ferrofluid droplets are inherently deformable and they can be controlled, individually or in aggregate, with multiple programmable deformabilities. For example, the liquid‐microrobot monomer (LRM) can pass through narrow channels via elongation and achieve scaling via splitting and coalescence. LRMs can also reassemble into various kinds of functional liquid‐robot aggregates, such as microsticks, micropies, microtrains, microkayaks, and microrollingpins. Thus, they can respond to multi‐terrain surfaces or perform various complex tasks. Moreover, the authors' physics‐based theoretical model demonstrates dynamic self‐assembly and group behavior of a multiple LRM system, which is conducive to investigating the mechanisms behind it. These ferrofluid droplet robots provide novel solutions for some potential applications, such as untethered micromanipulation and targeted cargo delivery.  相似文献   

15.
The separation of microsized oil droplets from water is strongly required by the environmental protection and petroleum industry. However, the separation of microsized oil droplets from water is often ignored. Herein, magnetic Janus particles are reported with a convex hydrophilic surface/concave oleophilic surface by emulsion interfacial polymerization and selective surface assembly, realizing the rapid and efficient separation of microscaled tiny oil droplets from water. These magnetic Janus particles exhibit significant abilities to separate microscaled oil droplets from water, which usually occurs within 120 s with a separation efficiency >99%. Theoretical and experimental results demonstrate that these magnetic Janus particles can capture tiny oil droplets to make them coalesce into larger ones during the process of separation. Further studies reveal that these Janus particles can self‐assemble and closely pack onto the interface of larger oil droplets, acting as surfactants to stabilize them. Moreover, the shape effect of the Janus particle is demonstrated on the coalescence of the oil droplets.  相似文献   

16.
The ability to gate (i.e., allow or block) droplet and fluid transport in a directional manner represents an important form of liquid manipulation and has tremendous application potential in fields involving intelligent liquid management. Inspired by passive transport across cell membranes which regulate permeability by transmembrane hydrophilic/hydrophobic interactions, macroscopic hydrophilic/hydrophobic Janus‐type membranes are prepared by facile vapor diffusion or plasma treatments for liquid gating. The resultant Janus membrane shows directional water droplet gating behavior in air‐water systems. Furthermore, membrane‐based directional gating of continuous water flow is demonstrated for the first time, enabling Janus membranes to act as facile fluid diodes for one‐way flow regulation. Additionally, in oil‐water systems, the Janus membranes show directional gating of droplets with integrated selectivity for either oil or water. The above remarkable gating properties of the Janus membranes could bring about novel applications in fluid rectifying, microchemical reaction manipulation, advanced separation, biomedical materials and smart textiles.  相似文献   

17.
Magnetic actuation provides a remote, nondestructive, and real‐time way for controllable liquid manipulation, which has promising technological applications for areas ranging from digital microfluidics, biochemical assays, and microreactors, to liquid collection. However, conventional magnetic liquid manipulation usually relies on incorporating magnetic particles into a liquid to empower its motion in response to an external magnetic field, resulting in considerable limitations of magnetic actuation in various applications. Recently, a range of magnetoresponsive surfaces (MRSs) with elaborately designed surface structures and/or compositions have enabled on‐demand liquid manipulation using magnetic fields, even when the liquids do not contain any magnetic particles. Here, the state‐of‐the‐art of MRSs capable of manipulation of nonmagnetic liquids is reviewed. Their preparation, different manipulation modes, including directed propulsion, spreading, and rebound, and the underlying working mechanisms are discussed. Based on the working principles, MRSs are classified into three categories, including surfaces with magnetic bendable microstructures, surfaces with switchable topographies, and surfaces infused with ferrofluids. Their applications in microfluidics, microreactors, liquid distributors and pumps, fog collection, and anti‐icing are presented. Finally, key challenges and the future prospects of MRSs are provided.  相似文献   

18.
Creation and annihilation of skyrmions are two crucial issues for constructing skyrmion-based memory and logic devices. To date, these operations were mainly achieved by means of external magnetic, electrical, and optical modulations. In this work, we demonstrated an effective strain-induced skyrmion nucleation/annihilation phenomenon in [Pt/Co/Ta]n multilayers utilizing the shape memory effect of a TiNiNb substrate. A tunable tensile strain up to 1.0% can be realized in the films by thermally driving phase transition of the substrate, which significantly decreases the nucleation field of skyrmions by as many as 400 Oe and facilitates the field-free manipulation of skyrmions with the strain. Such a strain effect can be attributed to the synergetic interplay of the planar magnetic moment twirling and decrement of interfacial Dzyaloshinskii–Moriya interaction. In addition, the strain tunability is found to be strongly related to the strain direction due to magnetoelastic interaction. These findings provide a novel strategy for developing strain-assisted skyrmion-based memory and logic devices.  相似文献   

19.
为了探究低韦伯条件下,微织构超疏水表面的液滴撞击动力学行为特性,利用激光微织构技术在航空用材Ti 6Al4V试样表面用不同扫描速度的纳秒激光制备出三角纹理微纳织构,借助高速摄像实验平台研究水滴撞击水平表面和倾斜表面动力学行为特性。实验结果表明,水滴冲击平表面高度越高,空气越不容易进入片层,使最大铺展系数增加;与平表面相比,相同高度的斜表面滑移时更多空气进入片层,最大铺展系数最小;其中在扫描速度为100mm/s的工况下,表面凸起占比达到64611,表面纳米颗粒最大,微米颗粒最多,表面的静态接触特性与动态接触特性最优。受表面结构和表面能协同作用共同影响水滴弹离表面的状态。本实验可为航空领域制备超疏水、主动防除冰表面提供一定参考。  相似文献   

20.
Liquid marble (LM) is a droplet that is wrapped by hydrophobic solid particles, which behave as a non-wetting soft solid. Based on these properties, LM can be applied in fluidics and soft device applications. A wide variety of functional particles have been synthesized to form functional LMs. However, the formation of multifunctional LMs by integrating several types of functional particles is challenging. Here, a general strategy for the flexible patterning of functional particles on droplet surfaces in a patchwork-like design is reported. It is shown that LMs can switch their macroscopic behavior between a stable and active state on super-repellent surfaces in situ by jamming/unjamming the surface particles. Active LMs hydrostatically coalesce to form a self-sorted particle pattern on the droplet surface. With the support of LM handling robotics, on-demand cyclic activation–manipulation–coalescence–stabilization protocols by LMs with different sizes and particle types result in the reliable design of multi-faced LMs. Based on this concept, a single bi-functional LM is designed from two mono-functional LMs as an advanced droplet carrier.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号