首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
For the in vivo relaxivity of Gd-DTPA at 6.3 T in rat muscle a value of 2.7±0.5 (mM s)−1 was found, and for the in vitro value in water 3.00±0.56 (mM s)−1 at 37°C. The temperature dependence of the in vitro relaxivity was −0.087 (mM s °C)−1. The relation between1/T 1 and the tissue Gd-DTPA concentration is linear for the normally used in vivo Gd-DTPA concentration range  相似文献   

2.

Objective

This study evaluates the inter-site and intra-site reproducibility of 7 Tesla brain imaging and compares it to literature values for other field strengths.

Materials and methods

The same two subjects were imaged at eight different 7 T sites. MP2RAGE, TSE, TOF, SWI, EPI as well as B1 and B0 field maps were analyzed quantitatively to assess inter-site reproducibility. Intra-site reproducibility was measured with rescans at three sites.

Results

Quantitative measures of MP2RAGE scans showed high agreement. Inter-site and intra-site reproducibility errors were comparable to 1.5 and 3 T. Other sequences also showed high reproducibility between the sites, but differences were also revealed. The different RF coils used were the main source for systematic differences between the sites.

Conclusion

Our results show for the first time that multi-center brain imaging studies of the supratentorial brain can be performed at 7 T with high reproducibility and similar reliability as at 3T. This study develops the basis for future large-scale 7 T multi-site studies.
  相似文献   

3.
Magnetic Resonance Materials in Physics, Biology and Medicine - High resolution MRI of the intracranial vessel wall provides important insights in the assessment of intracranial vascular disease....  相似文献   

4.
Magnetic Resonance Materials in Physics, Biology and Medicine - To develop methods for fluorine-19 (19F) MRI cell tracking in mice on a 3 Tesla clinical scanner. Compared to iron-based...  相似文献   

5.
Object

Lower-field MR is reemerging as a viable, potentially cost-effective alternative to high-field MR, thanks to advances in hardware, sequence design, and reconstruction over the past decades. Evaluation of lower field strengths, however, is limited by the availability of lower-field systems on the market and their considerable procurement costs. In this work, we demonstrate a low-cost, temporary alternative to purchasing a dedicated lower-field MR system.

Materials and Methods

By ramping down an existing clinical 3 T MRI system to 0.75 T, proton signals can be acquired using repurposed 13C transmit/receive hardware and the multi-nuclei spectrometer interface. We describe the ramp-down procedure and necessary software and hardware changes to the system.

Results

Apart from presenting system characterization results, we show in vivo examples of cardiac cine imaging, abdominal two- and three-point Dixon-type water/fat separation, water/fat-separated MR Fingerprinting, and point-resolved spectroscopy. In addition, the ramp-down approach allows unique comparisons of, e.g., gradient fidelity of the same MR system operated at different field strengths using the same receive chain, gradient coils, and amplifiers.

Discussion

Ramping down an existing MR system may be seen as a viable alternative for lower-field MR research in groups that already own multi-nuclei hardware and can also serve as a testing platform for custom-made multi-nuclei transmit/receive coils.

  相似文献   

6.
7.
Huang  Zhiwei  Gambarota  Giulio  Xiao  Ying  Wenz  Daniel  Xin  Lijing 《Magma (New York, N.Y.)》2023,36(2):309-315
Purpose

In this study, we aimed to measure the apparent diffusion coefficients (ADCs) of major phosphorous metabolites in the human calf muscle at 7 T with a diffusion-weighted (DW)-STEAM sequence.

Methods

A DW-STEAM sequence with bipolar gradients was implemented at 7 T, and DW MR spectra were acquired in three orthogonal directions in the human calf muscle of six healthy volunteers (TE/TM/TR = 15 ms/750 ms/5 s) at three b-values (0, 800, and 1200 s/mm2). Frequency and phase alignments were applied prior to spectral averaging. Averaged DW MR spectra were analyzed with LCModel, and ADCs of 31P metabolites were estimated.

Results

Four metabolites (phosphocreatine (PCr), adenosine triphosphate (ATP), inorganic phosphate (Pi) and glycerol phosphorylcholine (GPC)) were quantified at all b-values with mean CRLBs below 10%. The ADC values of PCr, ATP, Pi, and GPC were (0.24 ± 0.02, 0.15 ± 0.04, 0.43 ± 0.14, 0.40 ± 0.09) × 10–3 mm2/s, respectively.

Conclusion

The ADCs of four 31P metabolites were successfully measured in the human calf muscle at 7 T, among which those of ATP, Pi and GPC were reported for the first time in humans. This study paves the way to investigate 31P metabolite diffusion properties in health and disease on the clinical MR scanner.

  相似文献   

8.
Objective

Amide proton transfer (APT) weighted chemical exchange saturation transfer (CEST) imaging is increasingly used to investigate high-grade, enhancing brain tumours. Non-enhancing glioma is currently less studied, but shows heterogeneous pathophysiology with subtypes having equally poor prognosis as enhancing glioma. Here, we investigate the use of CEST MRI to best differentiate non-enhancing glioma from healthy tissue and image tumour heterogeneity.

Materials & Methods

A 3D pulsed CEST sequence was applied at 3 Tesla with whole tumour coverage and 31 off-resonance frequencies (+6 to -6 ppm) in 18 patients with non-enhancing glioma. Magnetisation transfer ratio asymmetry (MTRasym) and Lorentzian difference (LD) maps at 3.5 ppm were compared for differentiation of tumour versus normal appearing white matter. Heterogeneity was mapped by calculating volume percentages of the tumour showing hyperintense APT-weighted signal.

Results

LDamide gave greater effect sizes than MTRasym to differentiate non-enhancing glioma from normal appearing white matter. On average, 17.9 % ± 13.3 % (min–max: 2.4 %–54.5 %) of the tumour volume showed hyperintense LDamide in non-enhancing glioma.

Conclusion

This works illustrates the need for whole tumour coverage to investigate heterogeneity in increased APT-weighted CEST signal in non-enhancing glioma. Future work should investigate whether targeting hyperintense LDamide regions for biopsies improves diagnosis of non-enhancing glioma.

  相似文献   

9.
Objective One prerequisite for transferring ultra-high-field magnetic resonance imaging (MRI) (>3T) into clinical diagnostic workup is a low rate of side effects. To our knowledge, publications of subjective acceptance and willingness to undergo examinations at >3T are rare. We present first results from our research site. Materials and methods Exposure to 7T whole-body MRI of head, extremities, or breast was assessed in 102 subjects. They judged sources of discomfort (examination duration, room temperature) and physiological sensations (vertigo, light flashes) on a 10-point scale, differentiating between examination phases: table stationary or moving. For comparison, the same questionnaire was completed by 43 of these subjects after undergoing a 1.5T examination. Vertigo was the most pronounced sensation at 7T with 5% rating it as very unpleasant (none at 1.5T). This should be compared with the fact that the lengthy exam duration was regarded as even more uncomfortable. Compared to 1.5T, average study duration at 7T was roughly doubled, and 7T elicited a wider range of complaints. Conclusion Although the number of side effects is increased at 7T compared to 1.5T, 7T was well tolerated by the majority of subjects. Further data collection is necessary for better understanding of these effects.  相似文献   

10.

Objective

This study assesses and quantifies impairment of postoperative magnetic resonance imaging (MRI) at 7 Tesla (T) after implantation of titanium cranial fixation plates (CFPs) for neurosurgical bone flap fixation.

Materials and methods

The study group comprised five patients who were intra-individually examined with 3 and 7 T MRI preoperatively and postoperatively (within 72 h/3 months) after implantation of CFPs. Acquired sequences included T1-weighted magnetization-prepared rapid-acquisition gradient-echo (MPRAGE), T2-weighted turbo-spin-echo (TSE) imaging, and susceptibility-weighted imaging (SWI). Two experienced neurosurgeons and a neuroradiologist rated image quality and the presence of artifacts in consensus reading.

Results

Minor artifacts occurred around the CFPs in MPRAGE and T2 TSE at both field strengths, with no significant differences between 3 and 7 T. In SWI, artifacts were accentuated in the early postoperative scans at both field strengths due to intracranial air and hemorrhagic remnants. After resorption, the brain tissue directly adjacent to skull bone could still be assessed. Image quality after 3 months was equal to the preoperative examinations at 3 and 7 T.

Conclusion

Image quality after CFP implantation was not significantly impaired in 7 T MRI, and artifacts were comparable to those in 3 T MRI.
  相似文献   

11.
Objective

To determine whether a multi-feed, loop-dipole combined approach can be used to improve performance of rectangular dielectric resonator antenna (DRA) arrays human brain for MRI at 7 T.

Materials and methods

Electromagnetic field simulations in a spherical phantom and human voxel model “Duke” were conducted for different rectangular DRA geometries and dielectric constants εr. Three types of RF feed were investigated: loop-only, dipole-only and loop-dipole. Additionally, multi-channel array configurations up to 24-channels were simulated.

Results

The loop-only coupling scheme provided the highest B1+ and SAR efficiency, while the loop-dipole showed the highest SNR in the center of a spherical phantom for both single- and multi-channel configurations. For Duke, 16-channel arrays outperformed an 8-channel bow-tie array with greater B1+ efficiency (1.48- to 1.54-fold), SAR efficiency (1.03- to 1.23-fold) and SNR (1.63- to 1.78). The multi-feed, loop-dipole combined approach enabled the number of channels increase to 24 with 3 channels per block.

Discussion

This work provides novel insights into the rectangular DRA design for high field MRI and shows that the loop-only feed should be used instead of the dipole-only in transmit mode to achieve the highest B1+ and SAR efficiency, while the loop-dipole should be the best suited in receive mode to obtain the highest SNR in spherical samples of similar size and electrical properties as the human head.

  相似文献   

12.
Objective

Dysphagia or difficulty in swallowing is a potentially hazardous clinical problem that needs regular monitoring. Real-time 2D MRI of swallowing is a promising radiation-free alternative to the current clinical standard: videofluoroscopy. However, aspiration may be missed if it occurs outside this single imaged slice. We therefore aimed to image swallowing in 3D real time at 12 frames per second (fps).

Materials and methods

At 3 T, three 3D real-time MRI acquisition approaches were compared to the 2D acquisition: an aligned stack-of-stars (SOS), and a rotated SOS with a golden-angle increment and with a tiny golden-angle increment. The optimal 3D acquisition was determined by computer simulations and phantom scans. Subsequently, five healthy volunteers were scanned and swallowing parameters were measured.

Results

Although the rotated SOS approaches resulted in better image quality in simulations, in practice, the aligned SOS performed best due to the limited number of slices. The four swallowing phases could be distinguished in 3D real-time MRI, even though the spatial blurring was stronger than in 2D. The swallowing parameters were similar between 2 and 3D.

Conclusion

At a spatial resolution of 2-by-2-by-6 mm with seven slices, swallowing can be imaged in 3D real time at a frame rate of 12 fps.

  相似文献   

13.
Objective

Clinical relevance of dynamic glucose enhanced (DGE) chemical exchange saturation transfer (CEST) imaging has mostly been demonstrated at ultra-high field (UHF) due to low effect size. Results of a cohort study at clinical field strength are shown herein.

Materials and methods

Motion and field inhomogeneity corrected T1ρ‐based DGE (DGE⍴) images were acquired before, during and after a d-glucose injection with 6.3 s temporal resolution to detect accumulation in the brain. Six glioma patients with clear blood–brain barrier (BBB) leakage, two glioma patients with suspected BBB leakage, and three glioma patients without BBB leakage were scanned at 3 T.

Results

In high-grade gliomas with BBB leakage, d-glucose uptake could be detected in the gadolinium (Gd) enhancing region as well as in the tumor necrosis with a maximum increase of ∆DGE⍴ around 0.25%, whereas unaffected white matter did not show any significant DGE⍴ increase. Glioma patients without Gd enhancement showed no detectable DGE⍴ effect within the tumor.

Conclusion

First application of DGE⍴ in a patient cohort shows an association between BBB leakage and DGE signal irrespective of the tumor grade. This indicates that glucoCEST corresponds more to the disruptions of BBB with Gd uptake than to the molecular tumor profile or tumor grading.

  相似文献   

14.
Objective To evaluate a transverse electromagnetic (TEM), a circularly polarized (CP) (birdcage), and a 12-channel phased array head coil at the clinical field strength of B 0 = 3T in terms of signal-to-noise ratio (SNR), signal homogeneity, and maps of the effective flip angle α. Materials and methods SNR measurements were performed on low flip angle gradient echo images. In addition, flip angle maps were generated for αnominal = 30° using the double angle method. These evaluation steps were performed on phantom and human brain data acquired with each coil. Moreover, the signal intensity variation was computed for phantom data using five different regions of interest. Results In terms of SNR, the TEM coil performs slightly better than the CP coil, but is second to the smaller 12-channel coil for human data. As expected, both the TEM and the CP coils show superior image intensity homogeneity than the 12-channel coil, and achieve larger mean effective flip angles than the combination of body and 12-channel coil with reduced radio frequency power deposition. Conclusion At 3T the benefits of TEM coil design over conventional lumped element(s) coil design start to emerge, though the phased array coil retains an advantage with respect to SNR performance.  相似文献   

15.
Magnetic Resonance Materials in Physics, Biology and Medicine - Given the growing interest in fluorine, it is necessary to develop new multi-tuned RF coils. Therefore, our objective is to design a...  相似文献   

16.
Objective

To determine T1 and T2 relaxation times of healthy pancreas parenchyma at 7 T using a multi-transmit system.

Materials and methods

Twenty-six healthy subjects were scanned with a 7 T MR system using eight parallel transceiver antennas, each with two additional receive loops. A Look-Locker sequence was used to obtain images for T1 determination, while T2 was obtained from spin-echo images and magnetic resonance spectroscopy measurements with different echo times. T1 and T2 times were calculated using a mono-exponential fit of the average magnitude signal from a region of interest in the pancreas and were tested for correlation with age.

Results

The age range of the included subjects was 21–72 years. Average T1 and T2 relaxation times in healthy pancreas were 896 ± 149 ms, and 26.7 ± 5.3 ms, respectively. No correlation with age was found.

Conclusion

T1 and T2 relaxation times of the healthy pancreas were reported for 7 T, which can be used for image acquisition optimization. No significant correlations were found between age and T1 or T2 relaxation times of the pancreas. Considering their low standard deviation and no observable age dependence, these values may be used as a baseline to study potentially pancreatic tissue affected by disease.

  相似文献   

17.
18.
Objective

Low-field MRI systems are expected to cause less RF heating in conventional interventional devices due to lower Larmor frequency. We systematically evaluate RF-induced heating of commonly used intravascular devices at the Larmor frequency of a 0.55 T system (23.66 MHz) with a focus on the effect of patient size, target organ, and device position on maximum temperature rise.

Materials and methods

To assess RF-induced heating, high-resolution measurements of the electric field, temperature, and transfer function were combined. Realistic device trajectories were derived from vascular models to evaluate the variation of the temperature increase as a function of the device trajectory. At a low-field RF test bench, the effects of patient size and positioning, target organ (liver and heart) and body coil type were measured for six commonly used interventional devices (two guidewires, two catheters, an applicator and a biopsy needle).

Results

Electric field mapping shows that the hotspots are not necessarily localized at the device tip. Of all procedures, the liver catheterizations showed the lowest heating, and a modification of the transmit body coil could further reduce the temperature increase. For common commercial needles no significant heating was measured at the needle tip. Comparable local SAR values were found in the temperature measurements and the TF-based calculations.

Conclusion

At low fields, interventions with shorter insertion lengths such as hepatic catheterizations result in less RF-induced heating than coronary interventions. The maximum temperature increase depends on body coil design.

  相似文献   

19.
Magnetic Resonance Materials in Physics, Biology and Medicine - This work investigates electrodynamic constraints, explores RF antenna concepts and examines the transmission fields (B 1 + ) and RF...  相似文献   

20.
Objective

Wall shear stress (WSS) and its derived spatiotemporal parameters have proven to play a major role on intracranial aneurysms (IAs) growth and rupture. This study aims to demonstrate how ultra-high field (UHF) 7 T phase contrast magnetic resonance imaging (PC-MRI) coupled with advanced image acceleration techniques allows a highly resolved visualization of near-wall hemodynamic parameters patterns in in vitro IAs, paving the way for more robust risk assessment of their growth and rupture.

Materials and methods

We performed pulsatile flow measurements inside three in vitro models of patient-specific IAs using 7 T PC-MRI. To this end, we built an MRI-compatible test bench, which faithfully reproduced a typical physiological intracranial flow rate in the models.

Results

The ultra-high field 7 T images revealed WSS patterns with high spatiotemporal resolution. Interestingly, the high oscillatory shear index values were found in the core of low WSS vortical structures and in flow stream intersecting regions. In contrast, maxima of WSS occurred around the impinging jet sites.

Conclusions

We showed that the elevated signal-to-noise ratio arising from 7 T PC-MRI enabled to resolve high and low WSS patterns with a high degree of detail.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号