首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
High Li+ conductivity, good interfacial compatibility and high mechanical strength are desirable for practical utilization of all-solid-state electrolytes. In this study, by introducing Li6.4La3Zr1.4Ta0.6O12 (LLZTO) with surface defects into poly(ethylene oxide) (PEO), a composite solid electrolyte (OV-LLZTO/PEO) is prepared. The surface defects serve as anchoring points for oxygen atoms of PEO chains, forming a firmly bonded polymer-ceramic interface. This bonding effect effectively prevents the agglomeration of LLZTO particles and crystallization of PEO domains, forming a homogeneous electrolyte membrane exhibiting high mechanical strength, reduced interfacial resistance with electrodes as well as improved Li+ conductivity. Owing to these favorable properties, OV-LLZTO/PEO can be operated under a high current density (0.7 mA cm−2) in a Li–Li symmetric cell without short circuit. Above all, solid-state full-cells employing OV-LLZTO/PEO deliver state-of-the-art rate capability (8 C), power density and capacity retention. As a final proof of concept study, flexible pouch cells are assembled and tested, exhibiting high cycle stability under 5 C and excellent safety feature under abusive working conditions. Through manipulating the interfacial interactions between polymer and inorganic electrolytes, this study points out a new direction to optimizing the performance of all-solid-state batteries.  相似文献   

2.
Designing new functional materials is crucial for the development of efficient energy storage and conversion devices such as all solid‐state batteries. LiBH4 is a promising solid electrolyte for Li‐ion batteries. It displays high lithium mobility, although only above 110 °C at which a transition to a high temperature hexagonal structure occurs. Herein, it is shown that confining LiBH4 in the pores of ordered mesoporous silica scaffolds leads to high Li+ conductivity (0.1 mS cm?1) at room temperature. This is a surprisingly high value, especially given that the nanocomposites comprise 42 vol% of SiO2. Solid state 7Li NMR confirmed that the high conductivity can be attributed to a very high Li+ mobility in the solid phase at room temperature. Confinement of LiBH4 in the pores leads also to a lower solid‐solid phase transition temperature than for bulk LiBH4. However, the high ionic mobility is associated with a fraction of the confined borohydride that shows no phase transition, and most likely located close to the interface with the SiO2 pore walls. These results point to a new strategy to design low‐temperature ion conducting solids for application in all solid‐state lithium ion batteries, which could enable safe use of Li‐metal anodes.  相似文献   

3.
Solid polymer electrolytes (SPEs) provide an intimate contact with electrodes and accommodate volume changes in the Li-anode, making them ideal for all-solid-state batteries (ASSBs); however, confined chain swing, poor ion-complex dissociation, and barricaded Li+-transport pathways limit the ionic conductivity of SPEs. This study develops an interpenetrating polymer network electrolyte (IPNE) comprising poly(ethylene oxide)- and poly(vinylidene fluoride)-based networked SPEs (O-NSPE and F-NSPE, respectively) and lithium bis(fluorosulfonyl) imide (LiFSI) to address these challenges. The  CF2 / CF3 segments of the F-NSPE segregate FSI to form connected Li+-diffusion domains, and  C O C segments of the O-NSPE dissociate the complexed ions to expedite Li+ transport. The synergy between O-NSPE and F-NSPE gives IPNE high ionic conductivity (≈1 mS cm−1) and a high Li-transference number (≈0.7) at 30 °C. FSI aggregation prevents the formation of a space-charge zone on the Li-anode surface to enable uniform Li deposition. In Li||Li cells, the proposed IPNE exhibits an exchange current density exceeding that of liquid electrolytes (LEs). A Li|IPNE|LiFePO4 ASSB achieves charge–discharge performance superior to that of LE-based batteries and delivers a high rate of 7 mA cm−2. Exploiting the synergy between polymer networks to construct speedy Li+-transport pathways is a promising approach to the further development of SPEs.  相似文献   

4.
The urgent demand for high energy and safety batteries has generated the rapid development of Li6.4La3Zr1.4Ta0.6O12 (LLZTO) type solid-state lithium metal batteries. However, severe dendritic lithium growth, which is caused by poor interfacial contact of the Li/LLZTO interface and loss of electrical contact during cycles due to low intrinsic Li+ diffusion coefficient of lithium, greatly hampers its practical application. Here, from the point of view of reducing surface tension and improving ion diffusion of lithium, a composite lithium anode (CLA) with high wettability and ion diffusion coefficient is prepared by adding GaP into molten lithium, thus strengthening the CLA/LLZTO interface even in cycling. As envisioned, compared to pure lithium, CLA presents lower surface tension, larger adhesion work, and higher ion diffusion coefficient, ensuring close contact of the CLA/LLZTO interface. Therefore, the assembled symmetric cells exhibit a low area specific resistance of 4.5 Ω cm2, a large critical current density of 2.5 mA cm−2, and ultra-long lifespan of 5700 h at 0.3 mA cm−2 at 25 °C. Meanwhile, full cells coupled with LiFePO4 cathode show a high-capacity retention of 97.32% after 490 cycles at 1C. This work provides a new solution to the interfacial challenges of solid-state lithium-metal batteries.  相似文献   

5.
Solid-state lithium metal batteries (SSLMBs) are highly desirable for energy storage because of the urgent need for higher energy density and safer batteries. However, it remains a critical challenge for stable cycling of SSLMBs at low temperature. Here, a highly viscoelastic polyether-b-amide (PEO-b-PA) based composite solid-state electrolyte is proposed through a one-pot melt processing without solvent to address this key process. By adjusting the molar ratio of PEO-b-PA to lithium bis(trifluoromethanesulphonyl)imide (ethylene oxide:Li = 6:1) and adding 20 wt.% succinonitrile, fast Li+ transport channel is conducted within the homogeneous polymer electrolyte, which enables its application at ultra-low temperature (−20 to 25 °C). The composite solid-state electrolyte utilizes dynamic hydrogen-bonding domains and ion-conducting domains to achieve a low interfacial charge transfer resistance (<600 Ω) at −20 °C and high ionic conductivity (25 °C, 3.7 × 10−4 S cm−1). As a result, the LiFePO4|Li battery based on composite electrolyte exhibits outstanding electrochemical performance with 81.5% capacity retention after 1200 cycles at −20 °C and high discharge specific capacities of 141.1 mAh g−1 with high loading (16.1 mg cm−2) at 25 °C. Moreover, the solid-state SNCM811|Li cell achieves excellent safety performance under nail penetration test, showing great promise for practical application.  相似文献   

6.
Li-metal battery (LMB) suffers from the unexpected Li dendrite growth and unstable solid-electrolyte interphase (SEI), especially in the extreme conditions, such as high rates and low temperatures (LT). Herein, a high-rate and stable LT LMB is realized by regulating electrolyte chemistry. A weak Li+-solvating solvent 2-methyltetrahydrofuran is used as electrolyte solvent to mitigate the kinetic barrier for Li+ de-solvation. Moreover, a co-solvent tetrahydrofuran with a high donor number is incorporated to improve the LT solubility of Li salts, achieving an improved ionic conductivity while maintaining the weak Li+-solvation effect. Furthermore, abundant FSI- anions in contact-ion pairs are presented, facilitating the formation of a stable LiF-enriched SEI. Consequently, the Li||Li battery can be operated at 10 mA cm-2 with a small polarization of 154 mV at −40 °C. Meanwhile, an outstanding cumulative cycling capacity of 4000 mAh cm-2 at 8.0 mA cm-2 is achieved, reaching a record high level in LT alkali metal symmetric batteries. Also, rechargeable high-rate and stable full batteries are achieved at −40 °C. This work demonstrates the superiority of electrolyte chemistry for synergistic regulation of both ion transfer kinetics and SEI toward ultrafast and stable rechargeable LMBs at LT.  相似文献   

7.
Solid-state batteries (SSBs) are regarded as next generation advanced energy storage technology to provide higher safety and energy density. However, a practical application is plagued by large interfacial resistance, owing to solid-solid interface contact between ceramics electrolytes and Li anode. Introducing polymer-based coating between electrolytes and Li anode is a feasible strategy to solve this issue. Unfortunately, current polymer is hard to achieve intimate contact at the atomic scale and lacks of a bridge to transfer Li+ quickly between electrolytes and polymer coating. This gives rise to sluggish Li+ transfer dynamics, huge interface impedance and greatly limits the effectiveness of this strategy. Herein, Poly(lithium 4-styrenesulfonate)(PLSS) is introduced between Li6.5La3Zr1.5Ta0.5O12 (LLZTO) electrolyte and Li anode. The theories and experiments prove the existence of strong coordinating interaction between  SO3Li in PLSS and atoms on LLZTO surface. This interaction structures a bridge to migrate Li+ fast across LLZTO/PLSS interface and hence interface impedance is as low as 9 Ω cm2. Moreover, the electron-blocking feature of PLSS can prevent electrons from tunneling the LLZTO/PLSS interface and combining with Li+ to form dendrite within LLZTO. PLSS-base cells show improved long-life cycling for 4700 h at 0.1 mA cm−2 at room temperature.  相似文献   

8.
Solid electrolytes are the most promising substitutes for liquid electrolytes to construct high-safety and high-energy-density energy storage devices. Nevertheless, the poor lithium ion mobility and ionic conductivity at room temperature (RT) have seriously hindered their practical usage. Herein, single-layer layered-double-hydroxide nanosheets (SLN) reinforced poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) composite polymer electrolyte is designed, which delivers an exceptionally high ionic conductivity of 2.2 × 10−4 S cm−1 (25  ° C), superior Li+ transfer number ( ≈ 0.78) and wide electrochemical window ( ≈ 4.9 V) with a low SLN loading ( ≈ 1 wt%). The Li symmetric cells demonstrate ultra-long lifespan stable cycling over ≈ 900 h at 0.1 mA cm−2, RT. Moreover, the all-solid-state Li|LiFePO4 cells can run stably with a high capacity retention of 98.6% over 190 cycles at 0.1 C, RT. Moreover, using LiCoO2/LiNi0.8Co0.1Mn0.1O2, the all-solid-state lithium metal batteries also demonstrate excellent cycling at RT. Density functional theory calculations are performed to elucidate the working mechanism of SLN in the polymer matrix. This is the first report of all-solid-state lithium batteries working at RT with PVDF-HFP based solid electrolyte, providing a novel strategy and significant step toward cost-effective and scalable solid electrolytes for practical usage at RT.  相似文献   

9.
Solid-state lithium metal batteries (SSLMBs) are promising next-generation high-energy rechargeable batteries. However, the practical energy densities of the reported SSLMBs have been significantly overstated due to the use of thick solid-state electrolytes, thick lithium (Li) anodes, and thin cathodes. Here, a high-performance NASICON-based SSLMB using a thin (60 µm) Li1.5Al0.5Ge1.5(PO4)3 (LAGP) electrolyte, ultrathin (36 µm) Li metal, and high-loading (8 mg cm−2) LiFePO4 (LFP) cathode is reported. The thin and dense LAGP electrolyte prepared by hot-pressing exhibits a high Li ionic conductivity of 1 × 10−3 S cm−1 at 80 °C. The assembled SSLMB can thus deliver an increased areal capacity of ≈1 mAh cm−2 at C/5 with a high capacity retention of ≈96% after 50 cycles under 80 °C. Furthermore, it is revealed by synchrotron X-ray absorption spectroscopy and in situ high-energy X-ray diffraction that the side reactions between LAGP electrolyte and LFP cathode are significantly suppressed, while rational surface protection is required for Ni-rich layered cathodes. This study provides valuable insights and guidelines for the development of high-energy SSLMBs towards practical conditions.  相似文献   

10.
The development of solid electrolytes with the combination of high ionic conductivity, electrochemical stability, and resistance to Li dendrites continues to be a challenge. A promising approach is to create inorganic–organic composites, where multiple components provide the needed properties, but the high sintering temperature of materials such as ceramics precludes close integration or co‐sintering. Here, new ceramic–salt composite electrolytes that are cold sintered at 130 °C are demonstrated. As a model system, composites of Li1.5Al0.5Ge1.5(PO4)3 (LAGP) or Li1+x +y Alx Ti2?x Siy P3?y O12 (LATP) with bis(trifluoromethanesulfonyl)imide (LiTFSI) salts are cold sintered. The resulting LAGP–LiTFSI and LATP–LiTFSI composites exhibit high relative densities of about 90% and ionic conductivities in excess of 10?4 S cm?1 at 20 °C, which are comparable with the values obtained from LAGP and LATP sintered above 800 °C. It is also demonstrated that cold sintered LAGP–LiTFSI is electrochemically stable in Li symmetric cells over 1800 h at 0.2 mAh cm?2. Cold sintering provides a new approach for bridging the gap in processing temperatures of different materials, thereby enabling high‐performance composites for electrochemical systems.  相似文献   

11.
Solid-state electrolytes have drawn enormous attention to reviving lithium batteries but have also been barricaded in lower ionic conductivity at room temperature, awkward interfacial contact, and severe polarization. Herein, a sort of hierarchical composite solid electrolyte combined with a “polymer-in-separator” matrix and “garnet-at-interface” layer is prepared via a facile process. The commercial polyvinylidene fluoride-based separator is applied as a host for the polymer-based ionic conductor, which concurrently inhibits over-polarization of polymer matrix and elevates high-voltage compatibility versus cathode. Attached on the side, the compact garnet (Li6.4La3Zr1.4Ta0.6O12) layer is glued to physically inhibit the overgrowth of lithium dendrite and regulate the interfacial electrochemistry. At 25 °C, the electrolyte exhibits a high ionic conductivity of 2.73 × 10−4 S cm−1 and a decent electrochemical window of 4.77 V. Benefiting from this elaborate electrolyte, the symmetrical Li||Li battery achieves steady lithium plating/stripping more than 4800 h at 0.5 mA cm−2 without dendrites and short-circuit. The solid-state batteries deliver preferable capacity output with outstanding cycling stability (95.2% capacity retained after 500 cycles, 79.0% after 1000 cycles at 1 C) at ambient temperature. This hierarchical structure design of electrolyte may reveal great potentials for future development in fields of solid-state metal batteries.  相似文献   

12.
Solid‐state lithium (Li) batteries using solid electrolytes and Li anodes are highly desirable because of their high energy densities and intrinsic safety. However, low ambient‐temperature conductivity and poor interface compatibility of solid electrolytes as well as Li dendrite formation cause large polarization and poor cycling stability. Herein, a high transference number intercalated composite solid electrolyte (CSE) is prepared by the combination of a solution‐casting and hot‐pressing method using layered lithium montmorillonite, poly(ethylene carbonate), lithium bis(fluorosulfonyl)imide, high‐voltage fluoroethylene carbonate additive, and poly(tetrafluoroethylene) binder. The electrolyte presents high ionic conductivity (3.5 × 10?4 S cm?1), a wide electrochemical window (4.6 V vs Li+/Li), and high ionic transference number (0.83) at 25 °C. In addition, a 3D Li anode is also fabricated via a facile thermal infusion strategy. The synergistic effect of high transference number intercalated electrolyte and 3D Li anode is more favorable to suppress Li dendrites in a working battery. The solid‐state batteries based on LiFePO4 (Al2O3 @ LiNi0.5Co0.2Mn0.3O2), CSE, and 3D Li deliver admirable cycling stability with discharge capacity 145.9 mAh g?1 (150.7 mAh g?1) and capacity retention 91.9% after 200 cycles at 0.5 C (92.0% after 100 cycles at 0.2 C) at 25 °C. This work affords a splendid strategy for high‐performance solid‐state battery.  相似文献   

13.
The surface chemistry of garnet electrolyte is sensitive to air exposure. The poor LLZO/Li interface caused by Li2CO3/LiOH contaminants on garnet electrolyte surface easily induces large interfacial resistance resulting in the growth of Li dendrites. Herein, a versatile modification strategy is designed to convert the contaminants on Li6.4La3Zr1.4Ta0.6O12 (LLZTO) surface into a LiF and Li2PO3F-rich lithiophilic interface by targeted chemical reactions at the interface between LiPO2F2 and Li2CO3/LiOH. The newly formed LiF-Li2PO3F interfacial layer not only facilitates the interface wettability between Li and LLZTO, but also helps to resist corrosion of the LLZTO surface by moisture in the air. The Li|LiF&Li2PO3F-LLZTO|Li symmetric cell exhibits a low interfacial resistance of 5.1 Ω cm2 and ultrastable galvanostatic cycling, over 1500 h at 0.6 mA cm−2 and over 70 h at 1.0 mA cm−2. In addition, LiCoO2|LiF&Li2PO3F-LLZTO|Li hybrid solid-state full cells display high initial specific capacity of 192 mAh g−1 at 0.1 C, and excellent cycling stability with a capacity retention over 76% even after 1000 cycles at 0.5 C at a high cut-off voltage of 4.5 V. This study provides a simple and practical strategy for the feasibility of the application of high-voltage cathodes in this modified garnet all-solid-state batteries.  相似文献   

14.
Garnet Li7La3Zr2O12 (LLZO) is regarded as a promising solid electrolyte due to its high Li+ conductivity and excellent chemical stability, but suffers from grain boundary resistance and porous structure which restrict its practical applications in lithium–metal batteries. Herein, a novel and highly efficient TiO2-induced conversion strategy is proposed to generate Li ion-conductive Li0.5La0.5TiO3, which can simultaneously eliminate the pre-existing pores/voids and contamination Li2CO3. The Li/LLZTO-5TiO2/Li symmetric cell exhibits a high critical current density of 1.1 mA cm−2 at 25°C, and the long-term lithium cycling stability of over 1500 h at 0.1 mA cm−2. More importantly, the excellent performance of LLZTO-5TiO2 electrolyte is verified by LiCoO2/LiFePO4 coupled full cells. For example, The LiCoO2 coupled full cell exhibits a significant discharge rate capacity of 108 mAh g−1 at 0.1 C, and a discharge capacity retention rate of 91.23% even after 150 cycles of charge and discharge. COMSOL Multiphysics and density functional theory calculation reveal that LLZTO-5TiO2 electrolyte has a strong lithium affinity and uniform Li ions distribution, which can improve the cycle stability of Li–metal batteries by preventing dendrite growth.  相似文献   

15.
Nex-generation high-energy-density storage battery, assembled with lithium (Li)-metal anode and nickel-rich cathode, puts forward urgent demand for advanced electrolytes that simultaneously possess high security, wide electrochemical window, and good compatibility with electrode materials. Herein an intrinsically nonflammable electrolyte is designed by using 1 M lithium difluoro(oxalato)borate (LiDFOB) in triethyl phosphate (TEP) and N-methyl-N-propyl-pyrrolidinium bis(trifluoromethylsulfonyl)imide [Pyr13][TFSI] ionic liquid (IL) solvents. The introduction of IL can bring plentiful organic cations and anions, which provides a cation shielding effect and regulates the Li+ solvation structure with plentiful Li+-DFOB and Li+-TFSI complexes. The unique Li+ solvation structure can induce stable anion-derived electrolyte/electrode interphases, which effectively inhibit Li dendrite growth and suppress side reactions between TEP and electrodes. Therefore, the LiNi0.9Co0.05Mn0.05O2 (NCM90)/Li coin cell with this electrolyte can deliver stable cycling even under 4.5 V and 60 °C. Moreover, a Li-metal battery with thick NCM90 cathode (≈ 15 mg cm−2) and thin Li-metal anode (≈ 50 µm) (N/P ≈ 3), also reveals stable cycling performance under 4.4 V. And a 2.2 Ah NCM90/Li pouch cell can simultaneously possess prominent safety with stably passing the nail penetration test, and high gravimetric energy density of 470 Wh kg−1 at 4.4 V.  相似文献   

16.
Lithium (Li) metal batteries hold considerable promise for numerous energy-dense applications. However, the dendritic Li anode produced during Li+/Li deposition-stripping endangers battery safety and shortens cycle lifespan. Herein, an electrolyte interphase built from 2D anionic covalent organic frameworks (ACOF) is coated on Li for dendrite suppression. The ACOF with Li+-affinity facilitates rapid and exclusive passage of Li-ions from the electrolyte, yielding near-unity Li+ transference number (0.82) and ionic conductivity beyond 3.7 mS cm-1 at the interphase. Such high transport efficiency of Li-ions can fundamentally circumvent the Li+ deficiency that results in dendrite formation. Pairing the ACOF-coated Li against a high-voltage LiCoO2 cathode (4.5 V) achieves exceptional cycle stability, mitigated polarization, as well as improved rate capability. Accordingly, this strategy vastly expands the pool of electrolyte interphases that can be used for coating and protecting Li anode.  相似文献   

17.
Solid state lithium metal batteries are the most promising next‐generation power sources owing to their high energy density and safety. Solid polymer electrolytes (SPE) have gained wide attention due to the excellent flexibility, manufacturability, lightweight, and low‐cost processing. However, fatal drawbacks of the SPE such as the insufficient ionic conductivity and Li+ transference number at room temperature restrict their practical application. Here vertically aligned 2D sheets are demonstrated as an advanced filler for SPE with enhanced ionic conductivity, Li+ transference number, mechanical modulus, and electrochemical stability, using vermiculite nanosheets as an example. The vertically aligned vermiculite sheets (VAVS), prepared by the temperature gradient freezing, provide aligned, continuous, run‐through polymer‐filler interfaces after infiltrating with polyethylene oxide (PEO)‐based SPE. As a result, ionic conductivity as high as 1.89 × 10?4 S cm?1 at 25 °C is achieved with Li+ transference number close to 0.5. Along with their enhanced mechanical strength, Li|Li symmetric cells using VAVS–CSPE are stable over 1300 h with a low overpotential. LiFePO4 in all‐solid‐state lithium metal batteries with VAVS–CSPE could deliver a specific capacity of 167 mAh g?1 at 0.1 C at 35 °C and 82% capacity retention after 200 cycles at 0.5 C.  相似文献   

18.
Lithium metal (LM) is a promising anode material for next generation lithium ion based electrochemical energy storage devices. Critical issues of unstable solid electrolyte interphases (SEIs) and dendrite growth however still impede its practical applications. Herein, a composite gel polymer electrolyte (GPE), formed through in situ polymerization of pentaerythritol tetraacrylate with fumed silica fillers, is developed to achieve high performance lithium metal batteries (LMBs). As evidenced theoretically and experimentally, the presence of SiO2 not only accelerates Li+ transport but also regulates Li+ solvation sheath structures, thus facilitating fast kinetics and formation of stable LiF-rich interphase and achieving uniform Li depositions to suppress Li dendrite growth. The composite GPE-based Li||Cu half-cells and Li||Li symmetrical cells display high Coulombic efficiency (CE) of 90.3% after 450 cycles and maintain stability over 960 h at 3 mA cm−2 and 3 mAh cm−2, respectively. In addition, Li||LiFePO4 full-cells with a LM anode of limited Li supply of 4 mAh cm−2 achieve capacity retention of 68.5% after 700 cycles at 0.5 C (1 C = 170 mA g−1). Especially, when further applied in anode-free LMBs, the carbon cloth||LiFePO4 full-cell exhibits excellent cycling stability with an average CE of 99.94% and capacity retention of 90.3% at the 160th cycle at 0.5 C.  相似文献   

19.
Solid–solid interfaces in the composite cathode for solid-state batteries face the thorny issues of poor physical contact, chemical side reaction, temporal separation, and sluggish Li+/e transfer. Developing key material to achieve the composite cathode with efficient solid–solid interfaces is critical to improving the coulombic efficiency, cycling life, and energy density of solid-state batteries. Herein, electronic and ionic dual conductive polymer (DCP) is prepared for the composite cathode via intermolecular interaction on the base of lithiated polyvinyl formal-derived Li+ single-ion conductor (LiPVFM), lithium difluoro(oxalato)borate (LiODFB), and electronic conducting polymer. Crosslinking, coordination, and hydrogen-bonding effect enable DCP with high electrical conductivity of 68.9 S cm−1, Li+ ionic conductivity (2.76 × 10−4 S cm−1), large electrochemical window above 6 V and a high modulus of 6.8 GPa. Besides, DCP can form a coating layer on the active material powders to maintain structural integrity via buffering the internal stress during lithiation/delithiation, meanwhile, to construct long- and short-range electronic/ionic conductive channel together with a small amount of CNTs. Rigid and flexible DCP-based composite cathode enables the excellent cycling of solid-state batteries with a high loading up to 11.7 mg cm−2 and high content of active materials close to 90 wt% without current collector.  相似文献   

20.
Highly Li‐ion conductive Li4(BH4)3I@SBA‐15 is synthesized by confining the LiI doped LiBH4 into mesoporous silica SBA‐15. Uniform nanoconfinement of P63 mc phase Li4(BH4)3I in SBA‐15 mesopores leads to a significantly enhanced conductivity of 2.5 × 10?4 S cm?1 with a Li‐ion transference number of 0.97 at 35 °C. The super Li‐ion mobility in the interface layer with a thickness of 1.2 nm between Li4(BH4)3I and SBA‐15 is believed to be responsible for the fast Li‐ion conduction in Li4(BH4)3I@SBA‐15. Additionally, Li4(BH4)3I@SBA‐15 also exhibits a wide apparent electrochemical stability window (0 to 5 V vs Li/Li+) and a superior Li dendrite suppression capability (critical current density 2.6 mA cm?2 at 55 °C) due to the formation of stable interphases. More importantly, Li4(BH4)3I@SBA‐15‐based Li batteries using either high‐capacity sulfur cathode or high‐voltage oxide cathode show excellent electrochemical performances, making Li4(BH4)3I@SBA‐15 a very attractive electrolyte for next‐generation all‐solid‐state Li batteries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号