首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Bone related diseases have caused serious threats to human health owing to their complexity and specificity. Fortunately, owing to the unique 3D network structure with high aqueous content and functional properties, emerging hydrogels are regarded as one of the most promising candidates for bone tissue engineering, such as repairing cartilage injury, skull defect, and arthritis. Herein, various design strategies and synthesis methods (e.g., 3D-printing technology and nanoparticle composite strategy) are introduced to prepare implanted hydrogel scaffolds with tunable mechanical strength, favorable biocompatibility, and excellent bioactivity for applying in bone regeneration. Injectable hydrogels based on biocompatible materials (e.g., collagen, hyaluronic acid, chitosan, polyethylene glycol, etc.) possess many advantages in minimally invasive surgery, including adjustable physicochemical properties, filling irregular shapes of defect sites, and on-demand release drugs or growth factors in response to different stimuli (e.g., pH, temperature, redox, enzyme, light, magnetic, etc.). In addition, drug delivery systems based on micro/nanogels are discussed, and its numerous promising designs used in the application of bone diseases (e.g., rheumatoid arthritis, osteoarthritis, cartilage defect) are also briefed in this review. Particularly, several key factors of hydrogel scaffolds (e.g., mechanical property, pore size, and release behavior of active factors) that can induce bone tissue regeneration are also summarized in this review. It is anticipated that advanced approaches and innovative ideas of bioactive hydrogels will be exploited in the clinical field and increase the life quality of patients with the bone injury.  相似文献   

2.
Despite extensive progress to engineer hydrogels for a broad range of technologies, practical applications have remained elusive due to their (until recently) poor mechanical properties and lack of fabrication approaches, which constrain active structures to simple geometries. This study demonstrates a family of ionic composite hydrogels with excellent mechanical properties that can be rapidly 3D‐printed at high resolution using commercial stereolithography technology. The new material design leverages the dynamic and reversible nature of ionic interactions present in the system with the reinforcement ability of nanoparticles. The composite hydrogels combine within a single platform tunable stiffness, toughness, extensibility, and resiliency behavior not reported previously in other engineered hydrogels. In addition to their excellent mechanical performance, the ionic composites exhibit fast gelling under near‐UV exposure, remarkable conductivity, and fast osmotically driven actuation. The design of such ionic composites, which combine a range of tunable properties and can be readily 3D‐printed into complex architectures, provides opportunities for a variety of practical applications such as artificial tissue, soft actuators, compliant conductors, and sensors for soft robotics.  相似文献   

3.
Double‐network hydrogels (DN gels), despite their high water content, are the strongest and toughest soft and wet materials available. However, in conventional DN gels, which show extraordinarily high mechanical performance comparable to that of industrial rubbers, the first network must be a strong polyelectrolyte and this requirement greatly hinders the widespread application of these gels. A general method involving the use of a “molecular stent” for the synthesis of tough DN gels using any hydrophilic polymer as the first network is reported. This is the first reported method for the synthesis of tough DN gels using various neutral or weak polyelectrolyte hydrogels as the first network. This method helps extend the DN gel concept to various functional polymers and may increase the number of applications of hydrogels in various fields.  相似文献   

4.
The native extracellular matrix (ECM) generally exhibits dynamic mechanical properties and displays time-dependent responses to deformation or mechanical loading, in terms of viscoelastic behaviors (e.g., stress relaxation and creep). Viscoelasticity of the ECM plays a critical role in development, homeostasis, and tissue regeneration, and its implication in disease progression has also been recognized recently. Hydrogels with tunable viscoelastic properties hold a great promise to recapitulate such time-dependent mechanics found in native ECM, which have been recently used to regulate cell behavior and guide cell fate. Here the importance of tissue viscoelasticity is first highlighted, the molecular mechanisms of hydrogel viscoelasticity are summarized, and characterization techniques used at the macroscale and microscale are reviewed. Then, recent advances in developing novel hydrogels with tunable viscoelasticity through varying crosslinking strategies, engineering of viscoelastic cell microenvironment and its substantial effects on cell behavior and fate are described, and the underlying mechanobiology mechanisms are subsequently discussed. Finally, the ongoing challenges and future perspectives on the design and modulation of viscoelastic hydrogels and the mechanobiology mechanisms on cellular responses to viscoelastic cell microenvironment are proposed.  相似文献   

5.
Hydrogels have been widely explored to adapt to different application circumstances. As typical wet-soft materials, the high-water content of hydrogels is beneficial to their wide biomedical applications. Moreover, hydrogels have been displaying considerable application potential in some high-tech areas, like brain-computer interface, intelligent actuator, flexible sensor, etc. However, traditional hydrogel is susceptive to freezing below zero, dehydration, performance swelling-induced deformation, and suffers from mechanical damage in extremely mechanical environments, which result in the loss of wet-soft peculiarities (e.g., flexibility, structure integrity, transparency), greatly limiting their applications. Therefore, reducing the freezing point, improving the dehydration/solution resistance, and designing mechanical adaptability are effective strategies to endow hydrogels with the extreme environmental adaptability, thus broadening their application fields. This review systematically summarizes research advances of environmentally adaptive hydrogels (EAHs), comprising anti-freezing, dehydration-resistant, acid/base/swelling deformation-resistant, and mechanical environment adaptive hydrogels (MEAHs). Firstly, fabrication methods are presented, including the deep eutectic solvent/ionic liquid substituent, the addition of salts, organogel, polymer network modification, and double network (DN) complex/nanocomposite strategy, etc. Meanwhile, the features of different approaches are overviewed. The mechanisms, properties, and applications (e.g., intelligent actuator, wound dressing, flexible sensor) of EAHs are demonstrated. Finally, the issues and future perspectives for EAHs’ researches are demonstrated.  相似文献   

6.
Programmable locomotion of responsive hydrogels has gained increasing attention for potential applications in soft robotics, microfluidic components, actuators, and artificial muscle. Modulation of hydrogel pore structures is essential for tailoring their mechanical strength, response speeds, and motion behaviors. Conventional methods forming hydrogels with homogeneous or stepwise‐distributed pore structures are limited by the required compromise to simultaneously optimize these aspects. Here, a heterobifunctional crosslinker enabled hydrothermal process is introduced to synthesize responsive hydrogels with well‐defined gradient pore construction. According to gradient porosity controls, the hydrogels simultaneously exhibit rapid responses to external stimuli, high elasticity/compressibility, and programmable locomotion capability. By incorporating polypyrrole nanoparticles as photothermal transducers, photo/thermal responsive composite hydrogels are formed to enable programmable control of locomotion such as bending, curving, twisting, and octopus‐like swimming under near‐infrared laser stimulation. The tunable pore structures, mechanical properties, and locomotion of this new class of materials make these gradient porous hydrogels potentially suitable for a variety of applications.  相似文献   

7.
Hydrogels find widespread applications in biomedical engineering due to their hydrated environment and tunable properties (e.g., mechanical, chemical, biocompatible) similar to the native extracellular matrix (ECM). However, challenges still exist regarding utilizing hydrogels in applications such as engineering 3D tissue constructs and active targeting in drug delivery, due to the lack of controllability, actuation, and quick‐response properties. Recently, magnetic hydrogels have emerged as a novel biocomposite for their active response properties and extended applications. In this review, the state‐of‐the‐art methods for magnetic hydrogel preparation are presented and their advantages and drawbacks in applications are discussed. The applications of magnetic hydrogels in biomedical engineering are also reviewed, including tissue engineering, drug delivery and release, enzyme immobilization, cancer therapy, and soft actuators. Concluding remarks and perspectives for the future development of magnetic hydrogels are addressed.  相似文献   

8.
4D printing has emerged as an important technique for fabricating 3D objects from programmable materials capable of time-dependent reshaping. In the present investigation, novel 4D thermoinks composed of laponite (LAP), an interpenetrating network of poly(N-isopropylacrylamide) (PNIPAAm), and alginate (ALG) are developed for direct printing of shape-morphing structures. This approach consists of the design and fabrication of 3D honeycomb-patterned hydrogel discs self-rolling into tubular constructs under the stimulus of temperature. The shape morphing behavior of hydrogels is due to shear-induced anisotropy generated via 3D printing. The compositionally tunable hydrogel discs can be programmed to exhibit different actuation behaviors at different temperatures. Upon immersion in 12 °C water, singly crosslinked sheets roll up into a tubular construct. When transferred to 42 °C water, the tubes first rapidly unfold and then slightly curve up in the opposite direction. Through a dual photocrosslinking of PNIPAAm, it is possible to inverse temperature-dependent shape morphing and induce self-folding at higher and unrolling at lower temperatures. The extensive self-assembling motion is essential to developing thermal actuators with broad applications in, e.g., soft robotics and active implantology, whereas controllable self-rolling of planar hydrogels is of the highest interest to biomedical engineering as it allows for effective fabrication of hollow tubes.  相似文献   

9.
10.
Conducting polymer hydrogels are widely used as strain sensors in light of their distinct skin-like softness, strain sensitivity, and environmental adaptiveness in the fields of wearable devices, soft robots, and human-machine interface. However, the mechanical and electrical properties of existing conducting polymer hydrogels, especially fatigue-resistance and sensing robustness during long-term application, are unsatisfactory, which severely hamper their practical utilities. Herein, a strategy to fabricate conducting polymer hydrogels with anisotropic structures and mechanics is presented through a combined freeze-casting and salting-out process. The as-fabricated conducting polymer hydrogels exhibit high fatigue threshold (>300 J m−2), low Young's modulus (≈100 kPa), as well as long-term strain sensing robustness (over 10 000 cycles). Such superior performance enables their application as strain sensors to monitor the real-time movement of underwater robotics. The design and fabrication strategy for conducting polymer hydrogels reported in this study may open up an enticing avenue for functional soft materials in soft electronics and robotics.  相似文献   

11.
Nonequilibrium oscillation fueled by dissipating chemical energy is ubiquitous in living systems for realizing a broad range of complex functions. The design of synthetic materials that can mimic their biological counterparts in the production of dissipative structures and autonomous oscillations is of great interest but remains challenging. Here, a series of environmentally adaptable hydrogels functionalized with photoswitchable spiropyran derivatives that display a tunable equilibrium-shifting capability, thus endowing those hydrogels with a high degree of freedom and flexibility is reported. Such nonequilibrium hydrogels are able to responsively adapt their shapes under constant light illumination due to asymmetric deswelling, which in turn generates self-shadowing and consequently creates autonomous self-oscillating behaviors through a negative feedback process. Diverse oscillation modes including bending, twisting, and snap-through buckling with tunable frequency and amplitude are widely observed in three different molecular systems. Density functional theory calculations and finite element simulations further demonstrated the robustness of such a photoadaptable self-oscillation mechanism. This study provides a useful molecular design strategy for construction of highly adaptable hydrogels with potential applications in self-sustained soft robots and autonomous devices.  相似文献   

12.
3D‐printing is emerging as a technology to introduce microchannels into hydrogels, for the perfusion of engineered constructs. Although numerous techniques have been developed, new techniques are still needed to obtain the complex geometries of blood vessels and with materials that permit desired cellular responses. Here, a printing process where a shear‐thinning and self‐healing hydrogel “ink” is injected directly into a “support” hydrogel with similar properties is reported. The support hydrogel is further engineered to undergo stabilization through a thiol‐ene reaction, permitting (i) the washing of the ink to produce microchannels and (ii) tunable properties depending on the crosslinker design. When adhesive peptides are included in the support hydrogel, endothelial cells form confluent monolayers within the channels, across a range of printed configurations (e.g., straight, stenosis, spiral). When protease‐degradable crosslinkers are used for the support hydrogel and gradients of angiogenic factors are introduced, endothelial cells sprout into the support hydrogel in the direction of the gradient. This printing approach is used to investigate the influence of channel curvature on angiogenic sprouting and increased sprouting is observed at curved locations. Ultimately, this technique can be used for a range of biomedical applications, from engineering vascularized tissue constructs to modeling in vitro cultures.  相似文献   

13.
The mechanical properties of hydrogels are commonly modified by changing the concentration of the molecular components. This approach, however, does not only change hydrogel mechanics, but also the microstructure, which in turn alters the macroscopic properties of the gel. Here, the Hofmeister effect is used to change the thermoresponsiveness of polyisocyanide hydrogels. In contrast to previous Hofmeister studies, the effect is used to change the phase transition temperatures and to tailor the mechanics of the thermoresponsive (semiflexible) polymer gels. It is demonstrated that the gel stiffness can be manipulated over more than two orders of magnitude by the addition of salts. Surprisingly, the microstructure of the gels does not change upon salt addition, demonstrating that the Hofmeister effect provides an excellent route to change the mechanical properties without distorting other influential parameters of the gel.  相似文献   

14.
Hydrogels are promising materials in the applications of wound adhesives, wearable electronics, tissue engineering, implantable electronics, etc. The properties of a hydrogel rely strongly on its composition. However, the optimization of hydrogel properties has been a big challenge as increasing numbers of components are added to enhance and synergize its mechanical, biomedical, electrical, and self-healable properties. Here in this work, it is shown that high-throughput screening can efficiently and systematically explore the effects of multiple components (at least eight) on the properties of polysulfobetaine hydrogels, as well as provide a useful database for diverse applications. The optimized polysulfobetaine hydrogels that exhibit outstanding self-healing and mechanical properties, have been obtained by high-throughput screening. By compositing with poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS), intrinsically self-healable and stretchable conductors are achieved. It is further demonstrated that a polysulfobetaine hydrogel-based electronic skin, which exhibits exceptionally fast self-healing capability of the whole device at ambient conditions. This work successfully extends high-throughput synthetic methodology to the field of hydrogel electronics, as well as demonstrates new directions of healable flexible electronic devices in terms of material development and device design.  相似文献   

15.
Flexible conductive materials with intrinsic structural characteristics are currently in the spotlight of both fundamental science and advanced technological applications due to their functional preponderances such as the remarkable conductivity, excellent mechanical properties, and tunable physical and chemical properties, and so on. Typically, conductive hydrogel fibers (CHFs) are promising candidates owing to their unique characteristics including light weight, high length-to-diameter ratio, high deformability, and so on. Herein, a comprehensive overview of the cutting-edge advances the CHFs involving the architectural features, function characteristics, fabrication strategies, applications, and perspectives in flexible electronics are provided. The fundamental design principles and fabrication strategies are systematically introduced including the discontinuous fabrication (the capillary polymerization and the draw spinning) and the continuous fabrication (the wet spinning, the microfluidic spinning, 3D printing, and the electrospinning). In addition, their potential applications are crucially emphasized such as flexible energy harvesting devices, flexible energy storage devices, flexible smart sensors, and flexible biomedical electronics. This review concludes with a perspective on the challenges and opportunities of such attractive CHFs, allowing for better understanding of the fundamentals and the development of advanced conductive hydrogel materials.  相似文献   

16.
Stretchable conductive hydrogels with simultaneous high mechanical strength/modulus, and ultrahigh, stable electrical conductivity are ideal for applications in soft robots, artificial skin, and bioelectronics, but to date, they are still very challenging to fabricate. Herein, sandwich-structured hybrid hydrogels based on layers of aramid nanofibers (ANFs) reinforced polyvinyl alcohol (PVA) hydrogels and a layer of silver nanowires (AgNWs)/PVA are fabricated by electrospinning combined with vacuum-assisted filtration. The hybrid ANF-PVA hydrogels exhibit excellent mechanical properties with the tensile modulus of 10.7–15.4 MPa, tensile strength of 3.3–5.5 MPa, and fracture energy up to 5.7 kJ m−2, primarily attributed to the strong hydrogen bonding interactions between PVA and ANFs and in-plane alignment of the fibrous structure. Rational design of heterogeneous structure endows the hydrogels with ultrahigh apparent electrical conductivity of 1.66 × 104 S m−1, among the highest electrical conductivities ever reported so far for conductive hydrogels. More importantly, this ultrahigh conductivity remains constant upon a broad range of applied strains from 0–90% and over 500 stretching cycles. Furthermore, the hydrogels exhibit excellent Joule heating and electromagnetic interference shielding performances due to the ultrahigh electrical conductivity. These mechanically strong, hybrid hydrogels with ultrahigh and strain-invariant electrical conductivity represent great promises for many important applications such as flexible electronics.  相似文献   

17.
Jamming is a structural phenomenon that provides tunable mechanical behavior. A jamming structure typically consists of a collection of elements with low effective stiffness and damping. When a pressure gradient, such as vacuum, is applied, kinematic and frictional coupling increase, resulting in dramatically altered mechanical properties. Engineers have used jamming to build devices from tunable-stiffness grippers to tunable-damping landing gear. This study presents a rigorous framework that systematically guides the design of jamming structures for target applications. The force-deflection behavior of major types of jamming structures (i.e., grain, fiber, and layer) in fundamental loading conditions (e.g., tension, shear, and bending) is compared. High-performing pairs (e.g., grains in compression, layers in shear, and bending) are identified. Parameters that go into designing, fabricating, and actuating a jamming structure (e.g., scale, material, geometry, and actuator) are described, along with their effects on functional metrics. Two key methods to expand on the design space of jamming structures are introduced: using structural design to achieve effective tunable-impedance behavior in specific loading directions, and creating hybrid jamming structures to utilize the advantages of different types of jamming. Collectively, this study elaborates and extends the jamming design space, providing a conceptual modeling framework for jamming-based structures.  相似文献   

18.
Conductive hydrogels have emerged as fascinating materials applied in flexible electronics because of their integrated conductivity and mechanical flexibility. However, the large amounts of water in conductive hydrogels inevitably freeze at subzero temperature, causing a reduction of their ionic transport ability and elasticity. Herein, the bioinspired antifreezing agents—zwitterionic osmolytes (e.g., betaine, proline) are first proposed to prevent ammonium chloride‐containing Ca‐alginate/polyacrylamide hydrogels from freezing. With a facile one‐pot solvent displacement method, the zwitterionic osmolytes can displace the water molecules inside the hydrogels. Due to the excellent freeze tolerance of zwitterionic osmolytes, the resulting zwitterionic osmolyte‐based hydrogels exhibit outstanding ionic conductivity (up to ≈2.7 S m?1) at ?40 °C, which exceeds the conductivities of most reported conductive hydrogels. Meanwhile, they present stable mechanical flexibility over a wide temperature range (?40 to 25 °C). More importantly, two types of the resulting hydrogel‐based flexible electronics, including a capacitive sensor and a resistive sensor, can maintain their response function at ?40 °C. This work offers a new solution to fabricate conductive hydrogels with antifreezing ability, which can broaden the working temperature range of flexible electronics.  相似文献   

19.
Mechanical properties of hydrogels can be modified by the variation of structure and concentration of reactive building blocks. One promising biological source for the synthesis of biocompatible hydrogels is fibrinogen. Fibrinogen is a glycoprotein in blood, which can be transformed enzymatically to fibrin playing an important role in wound healing and clot formation. In the present work, it is demonstrated that hybrid hydrogels with their improved mechanical properties, tunable internal structure, and enhanced resistance to degradation can be synthesized by a combination of fibrinogen and reactive amphiphilic copolymers. Water‐soluble amphiphilic copolymers with tunable molecular weight and controlled amounts of reactive epoxy side groups are used as reactive crosslinkers to reinforce fibrin hydrogels. In the present work, copolymers that can influence the mechanical properties of fibrin‐based hydrogels are used. The reactive copolymers increase the storage modulus of the hydrogels from 600 Pa to 30 kPa. The thickness of fibrin fibers is regulated by the copolymer concentration. It could be demonstrated that the fibrin‐based hydrogels are biocompatible and support cell proliferation. Their degradation rate is considerably slower than that of native fibrin gels. In conclusion, fibrin‐based hydrogels with tunable elasticity and fiber thickness useful to direct cell responses like proliferation and differentiation are produced.  相似文献   

20.
Double network (DN) hydrogels with two strong asymmetric networks being chemically linked have demonstrated their excellent mechanical properties as the toughest hydrogels, but chemically linked DN gels often exhibit negligible fatigue resistance and poor self‐healing property due to the irreversible chain breaks in covalent‐linked networks. Here, a new design strategy is proposed and demonstrated to improve both fatigue resistance and self‐healing property of DN gels by introducing a ductile, nonsoft gel with strong hydrophobic interactions as the second network. Based on this design strategy, a new type of fully physically cross‐linked Agar/hydrophobically associated polyacrylamide (HPAAm) DN gels are synthesized by a simple one‐pot method. Agar/HPAAm DN gels exhibit excellent mechanical strength and high toughness, comparable to the reported DN gels. More importantly, because the ductile and tough second network of HPAAm can bear stress and reconstruct network structure, Agar/HPAAm DN gels also demonstrate rapid self‐recovery, remarkable fatigue resistance, and notable self‐healing property without any external stimuli at room temperature. In contrast to the former DN gels in both network structures and underlying association forces, this new design strategy to prepare highly mechanical DN gels provides a new avenue to better understand the fundamental structure‐property relationship of DN hydrogels, thus broadening current hydrogel research and applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号