首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Constructing MOF-on-MOF heterojunction with elaborate charge transfer mechanism and interface is a promising strategy for improving the photocatalytic properties of MOFs. Herein, a Step-scheme (S-scheme) MIL-125-NH2@CoFe Prussian blue analogue (PBA) heterojunction is reported for the first time. The MOF-on-MOF heterostructure exhibits a sandwich-like morphology with hollow CoFe PBA nanocages selectively assembled on the top-down surfaces of MIL-125-NH2 nanocakes. Experimental findings and theoretical simulation results reveal the formation of internal electric field via interfacial Ti O Co bonds at the heterojunction, providing driving force and atomic transportation highway for accelerating the S-scheme charge transfer and enhancing the redox performance. Contributed further by the hollow sandwich-like structures with increased active site exposure, the designed MOF-on-MOF heterojunction exhibits significantly enhanced photocatalytic activity for degradation of various organic pollutants. This study provides insights toward the rational design of semiconducting MOF-based heterojunctions with improved properties.  相似文献   

2.
Composites-based photocatalysis relies on the interfacial electron transfer between the metallic cocatalyst and photosensitizer (the semiconductor) to realize spatial separation of charge carriers. Herein, an ingenious heterojunction between Co-CN single atom catalysts (SACs) and g-C3N4 is constructed for heterogeneous photo-Fenton-like reactions. Driven by built-in electric field across the heterojunctions, the separation and migration of the photogenerated charge carriers is promoted, leading to the fast electron transfer from the g-C3N4 to the Co-CN SACs. Theoretical calculations and transient absorption spectroscopy reveal the modulated charge transfer and trapping in the SA-Co-CN/g-C3N4 heterostructure, resulting in the remarkably enhanced generation of reactive oxygen species via peroxymonosulfate activation under light irradiation. This ingenious SA-Co-CN/g-C3N4/PMS/vis system is efficient for the oxidation of various antibiotics with high removal efficiency (>98%), a wide operating pH range (pH 3–11) and excellent stability in long-term operation. This study provides a new tactic for rational design of SACs-based heterojunctions to bridge photocatalysis and heterogeneous catalysis, attaining superior photoredox activity via interfacial coupling.  相似文献   

3.
We have investigated the bias dependence of photocurrent in several organic heterojunction cells to elucidate the behavior of photogenerated charge carriers. Both the planar and planar-mixed heterojunction devices are shown to always have negative photocurrent even at large forward biases; this phenomena has been attributed to an increased driving force for carrier diffusion away from the heterointerface as the applied bias increases. In contrast, the drift current generally dominates in mixed heterojunction devices due to distributed nature of charge generation throughout the active layer, leading to a photocurrent that is highly dependent on the internal electric field. This dependence gives rise to the reversal of the photocurrent direction at high biases when compared to that at the short-circuit condition. However, the voltage yielding zero photocurrent shows appreciable wavelength dependence, which is strongly correlated to the detailed charge carrier generation profile within the active layer.  相似文献   

4.
The rational design of a step-scheme (S-scheme) heterojunctions in hybrid semiconductors by avoiding unwanted charge transport paths is considered as an attractive way to achieve high photocatalytic activity in hydrogen evolution reaction (HER). Here, a dual S-scheme heterojunction formed in the lychee-shaped W18O49/CdWO4/CdS nanostructures is proposed for improving the photocatalytic performance in HER under visible light irradiation. The remarkable activity in photocatalytic HER of W18O49/CdWO4/CdS is attributed to the unique structure and effective charge separation by the photoinduced defect-transit dual S-scheme mechanism and strong internal electric field. The measurements of X-ray photoelectron spectroscopy (XPS), femtosecond transient absorption (fs-TA) spectroscopy, and electron paramagnetic resonance (EPR) further confirm the photoinduced carrier transfer pathways following the dual S-scheme mechanism. This research can provide a new strategy for designing the dual S-scheme heterojunctions to improve photocatalytic performance through the defect band structure engineering.  相似文献   

5.
The formation of semiconductor composites comprising multicomponent or multiphase heterojunctions is a very effective strategy to design highly active photocatalyst systems. This review summarizes the recent strategies to develop such composites, and highlights the most recent developments in the field. After a general introduction into the different strategies to improve photocatalytic activity through formation of heterojunctions, the three different types of heterojunctions are introduced in detail, followed by a historical introduction to semiconductor heterojunction systems and a thorough literature overview. Special chapters describe the highly‐investigated carbon nitride heterojunctions as well as very recent developments in terms of multiphase heterojunction formation, including the latest insights into the anatase‐rutile system. When carefully designed, semiconductor composites comprising two or three different materials or phases very effectively facilitate charge separation and charge carrier transfer, substantially improving photocatalytic and photoelectrochemical efficiency.  相似文献   

6.
A facet junction (also called facet heterojunction or surface heterojunction) is defined as a complex polyhedral single crystal exposed to two, three, or four types of crystallographic planes, and is a promising platform for achieving multifunctional photocatalysis. Compared with simple polyhedral counterparts enclosed by the same crystallographic planes or conventional heterogeneous junctions, facet junctions have notable facet-crosslinking effects arising from different electronic structures of heterogeneous facets, which is beneficial for promoting the transfer and separation of photogenerated charge carriers in a single-crystalline semiconductor without the introduction of external species or interfaces. However, there are few specialized review articles on facet junction engineering of photocatalysts. Herein, an overview of facet junction-based photocatalysts is provided based on the following aspects: elementary knowledge, microstructural features, intrinsic facet-synergistic mechanisms, functional modifications, enhanced photocatalytic mechanisms, challenges and issues, and directions for future investigations. This review article will act as a theoretical base for researchers who are focused on facet-dependent effects to design and fabricate new photocatalysts.  相似文献   

7.
Covalent triazine frameworks (CTF) offer a tunable platform for photocatalytic H2 generation due to their diverse structures, low costs, and precisely tunable electronic structures. However, high exciton binding energy and short lifetimes of photogenerated carriers restrict their application in photocatalytic hydrogen evolution. Herein, a novel phosphorus-incorporated CTF is introduced to construct a chemically bonded PCTF/WO3 (PCTFW) heterostructure with a precise interface electron transfer channel. The phosphorus incorporation is found to dominantly reduce the exciton binding energy and promote the dissociation of singlet and triplet excitons into free charge carriers due to the regulation of electronic structures. High-quality interfacial W N bonds improve the interfacial transfer of photogenerated electrons, thus prolonging the lifetime of photogenerated electrons. Femtosecond transient absorption spectroscopy characterizations and DFT calculations further confirm both phosphorus incorporation and Z-scheme heterojunctions can synergistically boost the in-built electric field and accelerate the migration and separation of photogenerated electrons. The optimized photocatalytic H2-evolution rate of resultant PCTFW is 134.84 µmol h−1 (67.42 mmol h−1g−1), with an apparent quantum efficiency of 37.63% at 420 nm, surpassing many reported CTF-based photocatalysts so far. This work highlights the significance of atom-level interfacial exciton dissociation, and charge transfer and separation in improving photocatalysis.  相似文献   

8.
Semiconductor photocatalysts have received much attention in recent years due to their great potentials for the development of renewable energy technologies, as well as for environmental protection and remediation. The effective harvesting of solar energy and suppression of charge carrier recombination are two key aspects in photocatalysis. The formation of heterostructured photocatalysts is a promising strategy to improve photocatalytic activity, which is superior to that of their single component photocatalysts. This Feature Article concisely summarizes and highlights the state‐of‐the‐art progress of semiconductor/semiconductor heterostructured photocatalysts with diverse models, including type‐I and type‐II heterojunctions, Z‐scheme system, p–n heterojunctions, and homojunction band alignments, which were explored for effective improvement of photocatalytic activity through increase of the visible‐light absorption, promotion of separation, and transportation of the photoinduced charge carries, and enhancement of the photocatalytic stability.  相似文献   

9.
Charge separation at the interface of heterojunctions is affected by the energy band alignments of the materials that compose the heterojunctions. Controlling the contact crystal facets can lead to different energy band alignments owing to the varied electronic structures of the different crystal facets. Therefore, BiVO4‐TiO2 heterojunctions are designed with different BiVO4 crystal facets at the interface ({110} facet or {010} facet), named BiVO4‐110‐TiO2 and BiVO4‐010‐TiO2, respectively, to achieve high photocatalytic performance. Higher photocurrent density and lower photoluminescence intensity are observed with the BiVO4‐110‐TiO2 heterojunction than those of the BiVO4‐010‐TiO2 heterojunction, which confirms that the former possesses higher charge carrier separation capacity than the latter. The photocatalytic degradation results of both Rhodamine B and 4‐nonylphenol demonstrate that better photocatalytic performance is achieved on the BiVO4‐110‐TiO2 heterojunction than the BiVO4‐010‐TiO2 heterojunction under visible light (≥422 nm) irradiation. The higher electron transfer capacity and better photocatalytic performance of the BiVO4‐110‐TiO2 heterojunction are attributed to the more fluent electron transfer from the {110} facet of BiVO4 to TiO2 caused by the smaller interfacial energy barrier. This is further confirmed by the selective deposition of Pt on the TiO2 surface as well as the longer lifetime of Bi5+ in the BiVO4‐110‐TiO2 heterojunction.  相似文献   

10.
Graphdiyne (GDY), which features a highly π-conjugated structure, direct bandgap, and high charge carrier mobility, presents the major requirements for photocatalysis. Up to now, all photocatalytic studies are performed without paying too much attention on the GDY bandgap (1.1 eV at the G0W0 many-body theory level). Such a narrow bandgap is not suitable for the band alignment between GDY and other semiconductors, making it difficult to achieve efficient photogenerated charge carrier separation. Herein, for the first time, it is demonstrated that tuning the electronic bandgap of GDY via H-substitution (H-GDY) promotes interfacial charge separation and improves photocatalytic H2 evolution. The H-GDY exhibits an increased bandgap energy ( ≈ 2.5 eV) and exploitable conduction band minimum and valence band maximum edges. As a representative semiconductor, TiO2 is hybridized with both H-GDY and GDY to fabricate a heterojunction. Compared to the GDY/TiO2, the H-GDY/TiO2 heterojunction leads to a remarkable enhancement of the photocatalytic H2 generation by 1.35 times under UV–visible illumination (6200 µ mol h−1 g−1) and four times under visible light (670 µ mol h−1 g−1). Such enhancement is attributed to the suitable band alignment between H-GDY and TiO2, which efficiently promotes the photogenerated electron and hole separation, as supported by density functional theory calculations.  相似文献   

11.
BiOCl nanosheets/TiO2 nanotube arrays heterojunction UV photodetector (PD) with high performance is fabricated by a facile anodization process and an impregnation method. The heterojunction at the interface and the internal electric fields in the BiOCl nanosheets faciliate the separation of photogenerated charge carriers and regulate the transportation of the electrons. Compared with the large dark current (≈10?5 A), low on/off ratio (8.5), and slow decay time (>60 s) of the TiO2 PD, the optimized heterojunction PD (6‐BiOCl–TiO2) yields dramatically decreased dark current (≈1 nA), ultrahigh on/off ratio (up to 2.2 × 105), and fast decay speed (0.81 s) under 350 nm light illumination at ?5 V. Moreover, it exhibits an increased responsivity of 41.94 A W?1, a remarkable detectivity (D*) of 1.41 × 1014 Jones, and a high linear dynamic range of 103.59 dB. The loading amount and growth orientations of the BiOCl nanosheets alter the roles of the self‐induced internal electric field in regulating the behaviors of the charge carriers, thus affecting the photoelectric properties of the heterojunction PDs. These results demonstrate that rational construction of novel heterojunctions hold great potentials for fabricating photodetectors with high performance.  相似文献   

12.
Migration of excitons is of vital importance for the photovoltaic process in polymer-based donor/acceptor (D/A) photovoltaic system. Due to the existence of some trapping charges as well as the mismatch of energy levels at the D/A heterointerface, there will exist a nonuniform internal electric field, which may induce the migration or dissociation of an exciton or charge transfer state generated near the interface. In this work, by choosing the nonuniform internal electric field as a linear gradient form, we theoretically simulate the migration dynamics of an exciton in a polymer. It is found that the exciton will be polarized under the electric field. Especially, the polarized positive and negative charges in the exciton lie in different electric fields, which will induce a net force driving the exciton to migrate. Effects of some factors, such as the electron-phonon (e-ph) coupling, on the exciton migration are analyzed. This research reveals a new exciton migration mechanism in polymer-based D/A photovoltaic system, which might be timely for further understanding their photovoltaic process, and thus provide a new strategy to optimize the photovoltaic efficiency of the devices.  相似文献   

13.
The theoretical and experimental performance of Hg1-xCd xTe long wavelength infrared (LWIR) photoconductors fabricated on two-layer heterostructures grown by in situ MOCVD has been studied. It is shown that heterojunction blocking contact (HBC) photoconductors, consisting of wider bandgap Hg1-xCdx Te on an LWIR absorbing layer, give improved responsivity, particularly at higher applied bias, when compared with two-layer photoconductors incorporating n+/n contacts. An extension to existing device models is presented, which takes into account the recombination rate at the heterointerface and separates it from that occurring at both the contact-metal/semiconductor and passivant/semiconductor interfaces. The model requires a numerical solution to the continuity equation, and allows the device responsivity to be calculated as a function of applied electric field. Model predictions indicate that a change in bandgap across the heterointerface corresponding to a compositional change of Δx⩾0.04 essentially eliminates the onset of responsivity saturation due to minority carrier sweepout at high applied bias. Experimental results are presented for frontside-illuminated n-type Hg1-xCdxTe photoconductive detectors with either n+/n contacts or heterojunction blocking contacts. The devices are fabricated on a two-layer in situ grown MOCVD Hg1-xCdxTe wafer with a capping layer of x=0.31 and an LWIR absorbing layer of x=0.22. The experimental data clearly demonstrates the difficulty of forming n +/n blocking contacts on LWIR material, and indicates that heterojunctions are the only viable technology for forming effective blocking contacts to narrow bandgap semiconductors  相似文献   

14.
Photoinduced charge separation in bulk heterojunction solar cells is studied using a series of thiazolo‐thiazole donor polymers that differ in their side groups (and bridging atoms) blended with two acceptor fullerenes, phenyl‐C71‐butyric acid methyl ester (PC71BM) and a fullerene indene‐C60 bisadduct (ICBA). Transient absorption spectroscopy is used to determine the yields and lifetimes of photogenerated charge carriers, complimented by cyclic voltammetry studies of materials energetics, wide angle X‐ray diffraction and transmission electron microscopy studies of neat and blend film crystallinity and photoluminescence quenching studies of polymer/fullerene phase segregation, and the correlation of these measurements with device photocurrents. Good correlation between the initial polaron yield and the energetic driving force driving charge separation, ΔECS is observed. All blend films exhibit a power law transient absorption decay phase assigned to non‐geminate recombination of dissociated charges; the amplitude of this power law decay phase shows excellent correlation with photocurrent density in the devices. Furthermore, for films of one (relatively amorphous) donor polymer blended with ICBA, we observe an additional 100 ns geminate recombination phase. The implications of the observations reported are discussed in terms of the role of materials' crystallinity in influencing charge dissociation in such devices, and thus materials design requirements for efficient solar cell function.  相似文献   

15.
A new visible‐light responsive metallic photocatalyst, nanostructured MoO2, has been discovered. The metallic nature of MoO2 is confirmed by valance X‐ray photoelectron spectroscopy spectrum and theoretical calculations. However, MoO2 itself shows only moderate activity due to the serious charge recombination, a general disadvantage of metallic photocatalysts. The findings suggest that its effective charge diffusion length Lp is smaller than 1.0 nm while the separation efficiency ηsep is less than 10%. Therefore, only the periphery of the metallic MoO2 can effectively contribute to photocatalysis. This limitation is overcome by integrating MoO2 in a hydrothermal carbonation carbon (HTCC) matrix (mainly contains semiconductive polyfuran). This simple chemical modification brings two advantages: (i) an internal electric field is formed at the interface between MoO2 and HTCC due to their appropriate band alignment; (ii) the nanostructured MoO2 and the HTCC matrix are intertwined with each other intimately. Their small size and large contact area promote charge transfer, especially under the internal electric field. Therefore, the separation rate of photoexcited charge carrier in MoO2 is greatly enhanced. The activity increases by 2.4, 16.8, and 4.0 times in photocatalytic oxygen evolution, dyes degradation, and photoelectrochemicl cell, respectively. The new approach is helpful for further development of metallic photocatalysts.  相似文献   

16.
The construction of internal electric field is generally considered an effective strategy to enhance photocatalytic performance due to its significant role in charge separation. However, static internal electric field is prone to be saturated either by inner or outer shield effect, and thus its effect on the improvement of photocatalysis can easily vanish. Here, the self‐healing internal electric field is proposed and successfully endowed to a designed helical structural composite microfiber polyvinylidene fluoride/g‐C3N4 (PVDF/g‐C3N4) based on the bioinspired simple harmonic vibration. Importantly, the saturation and recovery of internal electric field are characterized by transient photovoltage and photoluminescence. The results indicate that the internal electric field could be saturated within about 10 min and refreshed with the assistance of rebuilt piezoelectric potential. The lifetime of photogenerated carriers is about 10?4 s and the number of effective carriers is greatly increased in the presence of self‐healing internal electric field. The results provide direct experimental evidence on the role of self‐healing internal electric field in charge transfer behavior. This work represents a new design strategy of photocatalysts, and it may open up new horizons for solving energy shortage and environmental issues.  相似文献   

17.
The metalorganic VPE process has been applied to the growth of GaAs-GaAlAs heterostructures suitable for FET devices. Two kinds of materials are examined; namely, insulating GaAlAs hetero-buffer and heterojunction p-GaAlAs-n-GaAs, The technology of device processing uses selective etching and self-alignment techniques. The heterobuffered FET's demonstrate effective electron confinement and the heterojunction HJFET's exhibit a built-in voltage of 1.4 eV. However, more has to be known on the transition at the heterointerface to improve the device performances.  相似文献   

18.
Organic electronic devices often consist of a sandwich structure containing several layers of disordered organic semiconductors. In the modeling of such devices it is essential that the charge transport across the organic heterojunctions is properly described. The presence of energetic disorder and of strong gradients in both the charge density and the electric field at the heterojunction complicates the use of continuum drift-diffusion approaches to calculate the electrical current, because of the discrete positions of the sites involved in the hopping transport of charges. We use the results of three-dimensional Monte Carlo simulations to construct boundary conditions in a one-dimensional continuum drift-diffusion approach that accurately describe the charge transport across the junction. The important effects of both short- and long-range Coulomb interactions at the junction are fully accounted for. The developed approach is expected to have a general validity.  相似文献   

19.
Organic semiconductors are widely investigated for their application in photovoltaics and photodetectors. We show that the efficiency of these devices is strongly influenced by the position of the space charge region, due to unintentional doping, and wavelength-dependent absorption properties in bulk heterojunctions. Spray-coated P3HT:PCBM bulk heterojunction photodiodes with thicknesses up to 4.2 μm and semitransparent top contact enable the characterization of exciton generation and separation in both irradiation directions. A large difference in external quantum efficiency (EQE) is observed for top and bottom illuminated configurations and is explained by a bias dependent arrangement of the space charge region at the two contact electrodes. Numerical drift–diffusion simulations allow to get insight into first order mechanisms behind the spectral features of EQE data in highly-doped organic photodiodes.  相似文献   

20.
A visible-light-active Ag3PO4/BiPO4 nanocomposite with a p–n heterojunction structure was fabricated via a co-precipitation hydrothermal process using 2-hydroxylethylammonium formate (RTIL) as a room-temperature ionic liquid. The resulting catalysts were characterized by various techniques. The photocatalytic activity of the photocatalysts was evaluated by the photodegradation of phthalocyanine Reactive Blue 21 (RB21) under both visible and UV light irradiations. The results reveal that the heterojunction composite prepared in RTIL noticeably exhibited an improvement in both efficiency and rate of RB21 photodegradation in comparison with pure Ag3PO4 and BiPO4. The enhanced photocatalytic activity of Ag3PO4/BiPO4 heterostructure prepared in RTIL is mainly ascribed to the internal electric field built at the heterojunction interface and efficient charge separation and transfer across the p–n junction. RTIL can also assist in decreasing the crystalline size, orderly distributing the particles, preventing the collapse of pore structures, and losing of composite surface area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号